मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

The Density of an Ideal Gas is 1.25 × 10−3 G Cm−3 at Stp. Calculate the Molecular Weight of the Gas. - Physics

Advertisements
Advertisements

प्रश्न

The density of an ideal gas is 1.25 × 10−3 g cm−3 at STP. Calculate the molecular weight of the gas.

Use R=8.31J K-1 mol-1

बेरीज

उत्तर

Let:
m = Mass of the gas
M = Molecular mass of the gas
Now,
Density of ideal gas,\[\rho\]= 1.25 × 10−3 gcm−3 =1.25 kgm−3
Pressure, = 1.01325\[\times\]105 Pa   (At STP)
Temperature, T = 273 K    (At STP)
Using the ideal gas equation, we get

\[PV   =   nRT                                         .  .  . (1)\] 

\[n   =   \frac{m}{M}                                                 .  .  . (2)\] 

\[ \therefore   PV   =   \frac{m}{M}RT\] 

\[ \Rightarrow M = \frac{m}{V}\frac{RT}{P}\] 

\[ \Rightarrow M = \rho\frac{RT}{P}\] 

\[ \Rightarrow M = 1 . 25 \times \frac{8 . 31 \times 273}{{10}^5}\] 

\[ \Rightarrow M = 2 . 83 \times  {10}^{- 2}   \] 

\[                   = 28 . 3  g -  {\text { mol }}^{- 1}   \]

shaalaa.com
Molecular Nature of Matter
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Kinetic Theory of Gases - Exercises [पृष्ठ ३४]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 2 Kinetic Theory of Gases
Exercises | Q 9 | पृष्ठ ३४

संबंधित प्रश्‍न

An air bubble of volume 1.0 cm3 rises from the bottom of a lake 40 m deep at a temperature of 12 °C. To what volume does it grow when it reaches the surface, which is at a temperature of 35 °C?


A gas in equilibrium has uniform density and pressure throughout its volume. This is strictly true only if there are no external influences. A gas column under gravity, for example, does not have the uniform density (and pressure). As you might expect, its density decreases with height. The precise dependence is given by the so-called law of atmospheres

n2 = n1 exp [-mg (h– h1)/ kBT]

Where n2, n1 refer to number density at heights h2 and h1 respectively. Use this relation to derive the equation for sedimentation equilibrium of a suspension in a liquid column:

n2 = n1 exp [-mg NA(ρ - P′) (h2 –h1)/ (ρRT)]

Where ρ is the density of the suspended particle, and ρ’ that of surrounding medium. [NA is Avogadro’s number, and R the universal gas constant.] [Hint: Use Archimedes principle to find the apparent weight of the suspended particle.]


Consider a collision between an oxygen molecule and a hydrogen molecule in a mixture of oxygen and hydrogen kept at room temperature. Which of the following are possible?
(a) The kinetic energies of both the molecules increase.
(b) The kinetic energies of both the molecules decrease.
(c) kinetic energy of the oxygen molecule increases and that of the hydrogen molecule decreases.
(d) The kinetic energy of the hydrogen molecule increases and that of the oxygen molecule decreases.


An electric bulb of volume 250 cc was sealed during manufacturing at a pressure of 10−3 mm of mercury at 27°C. Compute the number of air molecules contained in the bulb. Avogadro constant = 6 × 1023 mol−1, density of mercury = 13600 kg m−3 and g = 10 m s−2.

Use R=8.314J K-1 mol-1


Consider a sample of oxygen at 300 K. Find the average time taken by a molecule to travel a distance equal to the diameter of the earth.

Use R=8.314 JK-1 mol-1


Find the ratio of the mean speed of hydrogen molecules to the mean speed of nitrogen molecules in a sample containing a mixture of the two gases.

Use R = 8.314 JK-1 mol-1


Figure shows a vessel partitioned by a fixed diathermic separator. Different ideal gases are filled in the two parts. The rms speed of the molecules in the left part equals the mean speed of the molecules in the right part. Calculate the ratio of the mass of a molecule in the left part to the mass of a molecule in the right part.


A vertical cylinder of height 100 cm contains air at a constant temperature. The top is closed by a frictionless light piston. The atmospheric pressure is equal to 75 cm of mercury. Mercury is slowly poured over the piston. Find the maximum height of the mercury column that can be put on the piston.


A uniform tube closed at one end, contains a pellet of mercury 10 cm long. When the tube is kept vertically with the closed-end upward, the length of the air column trapped is 20 cm. Find the length of the air column trapped when the tube is inverted so that the closed-end goes down. Atmospheric pressure = 75 cm of mercury.


The ratio Cp / Cv for a gas is 1.29. What is the degree of freedom of the molecules of this gas?


Work done by a sample of an ideal gas in a process A is double the work done in another process B. The temperature rises through the same amount in the two processes. If CAand CB be the molar heat capacities for the two processes,


  The value of Cp − Cv is 1.00 R for a gas sample in state A and 1.08 R in state B. Let pAand pB denote the pressures and TA and TB denote the temperatures of the states A and B, respectively. It is most likely that


Let Cv and Cp denote the molar heat capacities of an ideal gas at constant volume and constant pressure respectively. Which of the following is a universal constant?


70 calories of heat are required to raise the temperature of 2 mole of an ideal gas at constant pressure from 30° C to 35° C. The amount of heat required to raise the temperature of the same gas through the same range at constant volume is


The figure shows a process on a gas in which pressure and volume both change. The molar heat capacity for this process is C.


One mole of gas expands obeying the relation as shown in the P-V diagram. The maximum temperature in this process is equal to ______.

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×