मराठी

The Electron in Hydrogen Atom is Initially in the Third Excited State. What is the Maximum Number of Spectral Lines Which Can Be Emitted When It Finally Moves to the Ground State? - Physics

Advertisements
Advertisements

प्रश्न

The electron in hydrogen atom is initially in the third excited state. What is the maximum number of spectral lines which can be emitted when it finally moves to the ground state?

उत्तर

 In is the quantum number of the highest energy level involved in the transitions, then the total number of possible spectral lines emitted is

`N = (n(n-1))/2`

Third excited state means fourth energy level i.e. n = 4. Here, electron makes transition from = 4 to = 1 so highest is = 4

Thus, possible spectral lines

`N = (4 (4 -1))/2`

   `=(4 xx 3)/2`

     = 6

6 is the maximum possible number of spectral lines.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2011-2012 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

In accordance with the Bohr’s model, find the quantum number that characterises the earth’s revolution around the sun in an orbit of radius 1.5 × 1011 m with orbital speed 3 × 104 m/s. (Mass of earth = 6.0 × 1024 kg)


A parallel beam of light of wavelength 100 nm passes through a sample of atomic hydrogen gas in ground state. (a) Assume that when a photon supplies some of its energy to a hydrogen atom, the rest of the energy appears as another photon. Neglecting the light emitted by the excited hydrogen atoms in the direction of the incident beam, what wavelengths may be observed in the transmitted beam? (b) A radiation detector is placed near the gas to detect radiation coming perpendicular to the incident beam. Find the wavelengths of radiation that may be detected by the detector.


Write postulates of Bohr’s Theory of hydrogen atom.


The simple Bohr model cannot be directly applied to calculate the energy levels of an atom with many electrons. This is because ______.


The Bohr model for the spectra of a H-atom ______.

  1. will not be applicable to hydrogen in the molecular from.
  2. will not be applicable as it is for a He-atom.
  3. is valid only at room temperature.
  4. predicts continuous as well as discrete spectral lines.

The mass of a H-atom is less than the sum of the masses of a proton and electron. Why is this?


State Bohr's postulate to explain stable orbits in a hydrogen atom. Prove that the speed with which the electron revolves in nth orbit is proportional to `(1/"n")`.


Given below are two statements:

Statements I: According to Bohr's model of an atom, qualitatively the magnitude of velocity of electron increases with decrease in positive charges on the nucleus as there is no strong hold on the electron by the nucleus.

Statement II: According to Bohr's model of an atom, qualitatively the magnitude of velocity of electron increase with a decrease in principal quantum number.
In light of the above statements, choose the most appropriate answer from the options given below:


The number of times larger the spacing between the energy levels with n = 3 and n = 8 spacing between the energy level with n = 8 and n = 9 for the hydrogen atom is ______.


The radius of the nth orbit in the Bohr model of hydrogen is proportional to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×