मराठी

The fourth term of an A.P. is 11 and the eighth term exceeds twice the fourth term by 5. Find the A.P. and the sum of first 50 terms. - Mathematics

Advertisements
Advertisements

प्रश्न

The fourth term of an A.P. is 11 and the eighth term exceeds twice the fourth term by 5. Find the A.P. and the sum of first 50 terms.

बेरीज

उत्तर

For an A.P.

t4 = 11

`\implies` a + 3d = 11  ...(i)

Also, t8 – 2t4 = 5

`\implies` (a + 7d) – 2 × 11 = 5

`\implies` a + 7d – 22 = 5

`\implies` a + 7d = 27  ...(ii)

Subtracting equation (i) from equation (ii), we get

a + 3d = 11
a + 7d = 27
–   –       –    
– 4d = – 16

d = `(- 16)/(- 4)`

`\implies` d = 4

Substituting d = 4 in equation (i), we get

a + 3d = 11

a + 3 × 4 = 11

`\implies` a + 12 = 11

`\implies` a = –1

∴ Required A.P. = a, a + d, a + 2d, a + 3d, ....

∴ a = –1

∴ a + d = –1 + 4 = 3

∴ a + 2d = –1 + 2(4) = –1 + 8 = 7

∴ a + 3d = –1 + 3(4) = –1 + 12 = 11

Sum of first 50 terms of this A.P.

=`50/2 [2 xx (-1) + 49 xx 4]`

= 25[–2 + 196]

= 25 × 194

= 4850

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Arithmetic Progression - Exercise 10 (C) [पृष्ठ १४४]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 10 Arithmetic Progression
Exercise 10 (C) | Q 14 | पृष्ठ १४४
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×