Advertisements
Advertisements
प्रश्न
The half-life of a certain radioactive species is 6.93 × 105 seconds. What is the decay constant?
उत्तर
Decay constant λ = `0.693/("T"_{1"/"2}) = 0.693/(6.93 xx 10^5) = 10^-6`s
APPEARS IN
संबंधित प्रश्न
Sample of carbon obtained from any living organism has a decay rate of 15.3 decays per gram per minute. A sample of carbon obtained from very old charcoal shows a disintegration rate of 12.3 disintegrations per gram per minute. Determine the age of the old sample given the decay constant of carbon to be 3.839 × 10−12per second.
Describe alpha, beta and gamma decays and write down the formulae for the energies generated in each of these decays.
Complete the following equation describing nuclear decay.
\[\ce{_88^226Ra->_2^4\alpha {+}}\] ______.
Choose the correct option.
\[\ce{^60_27CO}\] decays with a half-life of 5.27 years to produce \[\ce{^60_28Ni}\]. What is the decay constant for such radioactive disintegration?
Write relation between decay constant of a radioelement and its half-life.
The half-life of 35S is 87.8 d. What percentage of 35S sample remains after 180 d?
The half-life of radon is 3.82 d. By what time would 99.9% of radon will be decayed?
In Hydrogen, the electron jumps from the fourth orbit to the second orbit. The wavenumber of the radiations emitted by an electron is ______
The decay constant λ of a certain radioactive material is 0.2166 per day. The average life τ of the radioactive material is ______
Show that half life period of radioactive material varies inversely to decay constant λ.
A radioactive substance decays to (1/10)th of its original value in 56 days. Calculate its decay constant.
Most excited states of an atom have life times of about ____________.
The activity of a radioactive sample ____________.
The radioactivity of a sample is R1 at a time T1 and R2 at a time T2. If the half-life of the specimen is T, the number of atoms that have disintegrated in the time (T1 - T2) is proportional to ______.
A radioactive element has rate of disintegration 10,000 disintegrations per minute at a particular instant. After four minutes it become 2500 disintegrations per minute. The decay constant per minute is ______.
For radioactive substances, the fraction of its initial quantity (N0) which will disintegrate in its average lifetime is about ______.
(e = 2.71)
A radioactive sample S1 having the activity A1 has twice the number of nuclei as another sample S2 of activity A2 If A2 = 2A1 then the ratio of half-life of S1 to the half-life of S2 is ______.
The half-life of a radioactive substance is 10 days. The time taken for the `(7/8)^"th"` of the sample of disintegrates is ______.
The disintegration rate of a radio-active sample is 1010 per hour at 20 hours from the start. It reduces to 5 × 109 per hour after 30 hours. Calculate the decay constant.
If the number of nuclei of a radioactive substance becomes `1/e` times the initial number in 10 days, what is the decay constant of the substance?
Show that the number of nuclei of a radioactive material decreases exponentially with time.
The half-life of \[\ce{^238_92U}\] undergoing ∝- -decay is 4.5 × 109 years. What is the activity of 1g sample of \[\ce{^238_92U}\]?
Define half life period.
In one mean lifetime of a radioactive element the fraction of the nuclei that has disintegrated is ______. [e is the base of natural logarithm]