मराठी

The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, x29-y216 = 1 is ______. -

Advertisements
Advertisements

प्रश्न

The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.

पर्याय

  • (x2 + y2)2 – 16x2 + 9y2 = 0

  • (x2 + y2)2 – 9x2 + 144y2 = 0

  • (x2 + y2)2 – 9x2 – 16y2 = 0

  • (x2 + y2)2 – 9x2 + 16y2 = 0

MCQ
रिकाम्या जागा भरा

उत्तर

The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is `underlinebb((x^2 + y^2)^2 –  9x^2 + 16y^2 = 0)`.

Explanation:

Given equation of circle is x2 + y2 = 25

C(0, 0) and radius r = 5

Let the mid pint of the chord of the circle x2 + y2 = 25 be M(h, k)


In the above figure

AM = MB and AC = 5 (radius)

Slope of MC, mMC = `("k" - 0)/("h" - 0)`

⇒ mMC = `"k"/"h"`

Let the slope of AB be mAB

Then, mAB.mMC = –1  ...[∵ MC ⊥ AB]

mAB = `(-"h")/"k"`

Equation of chord AB

y – k = mAB(x – h)

⇒ y – k = `(-h)/k(x - h)`

⇒ ky = –hx + h2 + k2

⇒ y = `((-"h")/"k")x + (("h"^2 + "k"^2)/"k")`  ...(i)

Since, the equation (i) is the tangent to the hyperbola `x^2/9 - "y"^2/16` = 1  ...(ii)

If y = mx + c is tangent to the hyperbola `x^2/a^2 - "y"^2/"b"^2` = 1, (a < b) then c2 = a2m2 – b2

From equation (i) and (ii),

`(("h"^2 + "k"^2)/"k")^2 = (9)((-"h")/"k") - (16)`

⇒ `(("h"^2 + "k"^2)/"k")^2 = (9"h"^2 - 16"k"^2)/"k"^2`

⇒ (h2 + k2) = 9h2 – 16h2

Replace h and k by x and y

(x2 + y2)2 = 9x2 – 16y2

(x2 + y2)2 = 9x2 + 16y2 = 0

shaalaa.com
Conic Sections - Hyperbola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×