Advertisements
Advertisements
प्रश्न
The marks in science of 80 students of class X are given below: Find the mode of the marks obtained by the students in science.
Marks: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80 - 90 | 90 - 100 |
Frequency: | 3 | 5 | 16 | 12 | 13 | 20 | 5 | 4 | 1 | 1 |
उत्तर
Marks: | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 | 80 - 90 | 90 - 100 |
Frequency: | 3 | 5 | 16 | 12 | 13 | 20 | 5 | 4 | 1 | 1 |
Here the maximum frequency is 20, then the corresponding class 50 – 60 is model class
L = 50, h = 60 – 50 = 10, f = 20, f1 = 13, f2 = 5
Mode `rArr=l+(f-f1)/(2f-f1-f2)xxh`
`=50+(20-13)/(40-13-5)xx2`
`=50+(7xx10)/22`
`=50+70/22`
= 50 + 3.18
= 53.18
APPEARS IN
संबंधित प्रश्न
The following data gives the distribution of total monthly household expenditure of 200 families of a village. Find the modal monthly expenditure of the families. Also, find the mean monthly expenditure.
Expenditure (in Rs) | Number of families |
1000 − 1500 | 24 |
1500 − 2000 | 40 |
2000 − 2500 | 33 |
2500 − 3000 | 28 |
3000 − 3500 | 30 |
3500 − 4000 | 22 |
4000 − 4500 | 16 |
4500 − 5000 | 7 |
Find the mode of the following data:
3, 5, 7, 4, 5, 3, 5, 6, 8, 9, 5, 3, 5, 3, 6, 9, 7, 4
Heights of students of class X are givee in the flowing frequency distribution
Height (in cm) | 150 – 155 | 155 – 160 | 160 – 165 | 165 – 170 | 170 - 175 |
Number of students | 15 | 8 | 20 | 12 | 5 |
Find the modal height.
Also, find the mean height. Compared and interpret the two measures of central tendency.
Compute the mode from the following data:
Age (in years) | 0 – 5 | 5 – 10 | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 - 35 |
No of patients | 6 | 11 | 18 | 24 | 17 | 13 | 5 |
Mode is
A study of the yield of 150 tomato plants, resulted in the record:
Tomatoes per Plant | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 | 21 - 25 |
Number of Plants | 20 | 50 | 46 | 22 | 12 |
What is the frequency of the class preceding the modal class?
Find the mode of the given data: 3.1, 3.2, 3.3, 2.1, 1.3, 3.3, 3.1
Mode is the value of the variable which has ______.
There are lottery tickets labelled numbers from 1 to 500. I want to find the number which is most common in the lottery tickets. What quantity do I need to use?
For the following distribution:
Marks | Number of students |
Below 10 | 3 |
Below 20 | 12 |
Below 30 | 27 |
Below 40 | 57 |
Below 50 | 75 |
Below 60 | 80 |
The modal class is ______.