Advertisements
Advertisements
प्रश्न
The monthly income of 100 families are given as below:
Income (in Rs) | Number of families |
0 – 5000 | 8 |
5000 – 10000 | 26 |
10000 – 15000 | 41 |
15000 – 20000 | 16 |
20000 – 25000 | 3 |
25000 – 30000 | 3 |
30000 – 35000 | 2 |
35000 – 40000 | 1 |
Calculate the modal income.
उत्तर
In a given data, the highest frequency is 41, which lies in the interval 10000 – 15000.
Here, l = 10000, fm = 41, f1 = 26, f2 = 16 and h = 5000
∴ Mode = `l + ((f_m + f_1)/(2f_m - f_1 - f_2)) xx h`
= `10000 + ((41 - 26)/(2 xx 41 - 26 - 16)) xx 5000`
= `10000 + (15/(82 - 42)) xx 5000`
= `10000 + (15/40) xx 5000`
= 10000 + 15 × 125
= 10000 + 1875
= ₹ 11875
Hence, the modal income is ₹ 11875.
APPEARS IN
संबंधित प्रश्न
The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.
Runs scored | Number of batsmen |
3000 − 4000 | 4 |
4000 − 5000 | 18 |
5000 − 6000 | 9 |
6000 − 7000 | 7 |
7000 − 8000 | 6 |
8000 − 9000 | 3 |
9000 − 10000 | 1 |
10000 − 11000 | 1 |
Find the mode of the data.
Find the mode of the following distribution.
Class-interval: | 25 - 30 | 30 - 35 | 35 - 40 | 40 - 45 | 45 - 50 | 50 - 55 |
Frequency: | 25 | 34 | 50 | 42 | 38 | 14 |
The following table gives the daily income of 50 workers of a factory:
Daily income (in Rs) | 100 - 120 | 120 - 140 | 140 - 160 | 160 - 180 | 180 - 200 |
Number of workers: | 12 | 14 | 8 | 6 | 10 |
Find the mean, mode and median of the above data.
Calculate the mode from the following data:
Monthly salary (in Rs) | No of employees |
0 – 5000 | 90 |
5000 – 10000 | 150 |
10000 – 15000 | 100 |
15000 – 20000 | 80 |
20000 – 25000 | 70 |
25000 – 30000 | 10 |
Calculate the mode of the following distribution:
Class | 10 − 15 | 15 − 20 | 20 − 25 | 25 − 30 | 30 − 35 |
Frequency | 4 | 7 | 20 | 8 | 1 |
Find the mode of the following frequency distribution:
x | 10 | 11 | 12 | 13 | 14 | 15 |
f | 1 | 4 | 7 | 5 | 9 | 3 |
Find the mode of the following data:
Marks | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 |
Number of students | 22 | 38 | 46 | 34 | 20 |
In the formula `x-a+(sumf_i d_i)/(sumf_i),` for finding the mean of grouped data d1's are deviations from the ______.
For the following frequency distribution, find the mode:
Class | 25 – 30 | 30 – 35 | 35 – 40 | 40 – 45 | 45 – 50 |
Frequency | 12 | 5 | 14 | 8 | 9 |
The mode of the numbers 2, 3, 3, 4, 5, 4, 4, 5, 3, 4, 2, 6, 7 is ______.