मराठी

The monthly income of 100 families are given as below: Income (in Rs) Number of families 0 – 5000 8 5000 – 10000 26 10000 – 15000 41 15000 – 20000 16 20000 – 25000 3 25000 – 30000 3 30000 – 35000 - Mathematics

Advertisements
Advertisements

प्रश्न

The monthly income of 100 families are given as below:

Income (in Rs) Number of families
0 – 5000 8
5000 – 10000 26
10000 – 15000 41
15000 – 20000 16
20000 – 25000 3
25000 – 30000 3
30000 – 35000 2
35000 – 40000 1

Calculate the modal income.

बेरीज

उत्तर

In a given data, the highest frequency is 41, which lies in the interval 10000 – 15000.

Here, l = 10000, fm = 41, f1 = 26, f2 = 16 and h = 5000

∴ Mode = `l + ((f_m + f_1)/(2f_m - f_1 - f_2)) xx h`

= `10000 + ((41 - 26)/(2 xx 41 - 26 - 16)) xx 5000`

= `10000 + (15/(82 - 42)) xx 5000`

= `10000 + (15/40) xx 5000`

= 10000 + 15 × 125

= 10000 + 1875

= ₹ 11875

Hence, the modal income is ₹ 11875.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Statistics and Probability - Exercise 13.3 [पृष्ठ १७१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 13 Statistics and Probability
Exercise 13.3 | Q 17 | पृष्ठ १७१

संबंधित प्रश्‍न

The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.

Runs scored Number of batsmen
3000 − 4000 4
4000 − 5000 18
5000 − 6000 9
6000 − 7000 7
7000 − 8000 6
8000 − 9000 3
9000 − 10000 1
10000 − 11000 1

Find the mode of the data.


Find the mode of the following distribution.

Class-interval: 25 - 30 30 - 35 35 - 40 40 - 45 45 - 50 50 - 55
Frequency: 25 34 50 42 38 14

 


The following table gives the daily income of 50 workers of a factory:

Daily income (in Rs) 100 - 120 120 - 140 140 - 160 160 - 180 180 - 200
Number of workers: 12 14 8 6 10

Find the mean, mode and median of the above data.


Calculate the mode from the following data:

Monthly salary (in Rs) No of employees
0 – 5000 90
5000 – 10000 150
10000 – 15000 100
15000 – 20000 80
20000 – 25000 70
25000 – 30000 10

 


Calculate the mode of the following distribution:

Class 10 − 15 15 − 20 20 − 25 25 − 30 30 − 35
Frequency 4 7 20 8 1

Find the mode of the following frequency distribution:

x 10 11 12 13 14 15
f 1 4 7 5 9 3

Find the mode of the following data:

Marks 0 − 10 10 − 20 20 − 30 30 − 40 40 − 50
Number of students 22 38 46 34 20

In the formula `x-a+(sumf_i d_i)/(sumf_i),` for finding the mean of grouped data d1's are deviations from the ______.


For the following frequency distribution, find the mode:

Class 25 – 30 30 – 35 35 – 40 40 – 45 45 – 50
Frequency 12 5 14 8 9

The mode of the numbers 2, 3, 3, 4, 5, 4, 4, 5, 3, 4, 2, 6, 7 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×