Advertisements
Advertisements
प्रश्न
The probability an event of a trial is
पर्याय
1
0
less than 1
more than 1
उत्तर
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P (A) and is given by
P(A) = ` m/n`
Note that m is always less than or equal to n and n is a positive integers, it can’t be zero. But, m is a non negative integer. So, the maximum value of probability of an event is `n/n=1`, which is the probability of a certain event and the minimum value of it is 0, which is the probability of an impossible event. For any other events the value is in between 0 and 1.
APPEARS IN
संबंधित प्रश्न
An organization selected 2400 families at random and surveyed them to determine a relationship between income level and the number of vehicles in a family. The information gathered is listed in the table below:-
Monthly income (in Rs.) |
Vehicles per family | |||
0 | 1 | 2 | Above 2 | |
Less than 7000 | 10 | 160 | 25 | 0 |
7000 – 10000 | 0 | 305 | 27 | 2 |
10000 – 13000 | 1 | 535 | 29 | 1 |
13000 – 16000 | 2 | 469 | 59 | 25 |
16000 or more | 1 | 579 | 82 | 88 |
Suppose a family is chosen, find the probability that the family chosen is
(i) earning Rs 10000 − 13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000 − 16000 per month and owning more than 2 vehicles.
(v) owning not more than 1 vehicle.
To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table.
Opinion | Number of students |
like | 135 |
dislike | 65 |
Find the probability that a student chosen at random
(i) likes statistics, (ii) does not like it
Concentration of SO2 (in ppm) | Number of days (Frequency) |
0.00 − 0.04 | 4 |
0.04 − 0.08 | 9 |
0.08 − 0.12 | 9 |
0.12 − 0.16 | 2 |
0.16 − 0.20 | 4 |
0.20 − 0.24 | 2 |
Total | 30 |
The above frequency distribution table represents the concentration of sulphur dioxide in the air in parts per million of a certain city for 30 days. Using this table, find the probability of the concentration of sulphur dioxide in the interval 0.12 − 0.16 on any of these days.
Blood Group | Number of Students |
A | 9 |
B | 6 |
AB | 3 |
O | 12 |
Total | 30 |
The above frequency distribution table represents the blood groups of 30 students of a class. Use this table to determine the probability that a student of this class, selected at random, has blood group AB.
A company selected 2400 families at random and survey them to determine a relationship between income level and the number of vehicles in a home. The information gathered is listed in the table below:
Monthly income: (in Rs) |
Vehicles per family | |||
0 | 1 | 2 | Above 2 | |
Less than 7000 7000-10000 10000-13000 13000-16000 16000 or more |
10 0 1 2 1 |
160 305 535 469 579 |
25 27 29 29 82 |
0 2 1 25 88 |
If a family is chosen, find the probability that family is:
(i) earning Rs10000-13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000-16000 per month and owning more than 2 vehicle.
(v) owning not more than 1 vehicle
(vi) owning at least one vehicle.
Define probability of an event.
A company selected 4000 households at random and surveyed them to find out a relationship between income level and the number of television sets in a home. The information so obtained is listed in the following table:
Monthly income (in Rs) |
Number of Television/household | |||
0 | 1 | 2 | Above 2 | |
< 10000 | 20 | 80 | 10 | 0 |
10000 – 14999 | 10 | 240 | 60 | 0 |
15000 – 19999 | 0 | 380 | 120 | 30 |
20000 – 24999 | 0 | 520 | 370 | 80 |
25000 and above | 0 | 1100 | 760 | 220 |
Find the probability:
- of a household earning Rs 10000 – Rs 14999 per year and having exactly one television.
- of a household earning Rs 25000 and more per year and owning 2 televisions.
- of a household not having any television.
Two dice are thrown simultaneously 500 times. Each time the sum of two numbers appearing on their tops is noted and recorded as given in the following table:
Sum | Frequency |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
If the dice are thrown once more, what is the probability of getting a sum less than or equal to 5?
Two dice are thrown simultaneously 500 times. Each time the sum of two numbers appearing on their tops is noted and recorded as given in the following table:
Sum | Frequency |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
If the dice are thrown once more, what is the probability of getting a sum between 8 and 12?
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have more than 13 defective parts