Advertisements
Advertisements
प्रश्न
A company selected 2400 families at random and survey them to determine a relationship between income level and the number of vehicles in a home. The information gathered is listed in the table below:
Monthly income: (in Rs) |
Vehicles per family | |||
0 | 1 | 2 | Above 2 | |
Less than 7000 7000-10000 10000-13000 13000-16000 16000 or more |
10 0 1 2 1 |
160 305 535 469 579 |
25 27 29 29 82 |
0 2 1 25 88 |
If a family is chosen, find the probability that family is:
(i) earning Rs10000-13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000-16000 per month and owning more than 2 vehicle.
(v) owning not more than 1 vehicle
(vi) owning at least one vehicle.
उत्तर
The total number of trials is 2400.
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted byP (A) and is given by
` P(A) = m/n`
(i) Let A1 be the event that a chosen family earns Rs 10000-13000 per month and owns exactly 2 vehicles.
The number of times A1 happens is 29.
Therefore, we have` P (A_1) = 29/2400`
(ii) Let A2 be the event that a chosen family earns Rs 16000 or more per month and owns exactly 1 vehicle.
The number of times A2 happens is 579.
Therefore, we have ` P (A_2) = 579/2400`
(iii) Let A3 be the event that a chosen family earns less than Rs 7000 per month and does not owns any vehicles.
The number of times A3 happens is 10.
Therefore, we have
` P (A_3) = 10/2400`
=`1/240`
(iv) Let A4 be the event that a chosen family earns Rs 13000-16000 per month and owns more than 2 vehicles.
The number of times A4 happens is 25.
Therefore, we have
` P (A_4) = 25/2400`
=`1/96`
(v) Let A5 be the event that a chosen family owns not more than 1 vehicle (may be 0 or 1). In this case the number of vehicles is independent of the income of the family.
The number of times A5 happens is
(10+0+1+2+1)+(160+305+535+469+579)=2062.
Therefore, we have
` P (A_5) = 2062/2400`
=`1031/1200`
(vi) Let A6 be the event that a chosen family owns atleast 1 vehicle (may be 1 or 2 or above 2). In this case the number of vehicles is independent of the income of the family.
The number of times A6 happens is
(160+305+535+469+579)+(25+27+29+29+82)+(0+2+1+25+88)=2356 .
Therefore, we have
` P (A_6) = 2356/2400`
=`589/600`
APPEARS IN
संबंधित प्रश्न
Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes:-
Outcome | 3 heads | 2 heads | 1 head | No head |
Frequency | 23 | 72 | 77 | 28 |
If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.
Two coins are tossed simultaneously 500 times with the following frequencies of different outcomes:
Two heads: 95 times
One tail: 290 times
No head: 115 times
Find the probability of occurrence of each of these events.
In a cricket match, a batsman hits a boundary 6 times out of 30 balls he plays.
(i) he hits boundary
(ii) he does not hit a boundary.
To know the opinion of the students about Mathematics, a survey of 200 students was conducted. The data is recorded in the following table:
Opinion: | Like | Dislike |
Number of students: | 135 | 65 |
Find the probability that a student chosen at random (i) likes Mathematics (ii) does not like it.
The blood groups of 30 students of class IX are recorded as follows:
A | B | O | O | AB | O | A | O | B | A | O | B | A | O | O |
A | AB | O | A | A | O | O | AB | B | A | O | B | A | B | O |
(i) A
(ii) B
(iii) AB
(iv) O
Following table shows the birth month of 40 students of class IX.
Jan | Feb | March | April | May | June | July | Aug | Sept | Oct | Nov | Dec |
3 | 4 | 2 | 2 | 5 | 1 | 2 | 5 | 3 | 4 | 4 | 4 |
Define an elementary event.
Define an event.
A die is thrown 100 times. If the probability of getting an even number is `2/5` . How many times an odd number is obtained?
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is having age from 30 to 39 years