Advertisements
Advertisements
प्रश्न
Two coins are tossed simultaneously 500 times with the following frequencies of different outcomes:
Two heads: 95 times
One tail: 290 times
No head: 115 times
Find the probability of occurrence of each of these events.
उत्तर
The total number of trials is 500.
Let A be the event of getting two heads, B be the event of getting one tail and C be the event of getting no head.
The number of times A happens is 95, the number of times B happens is 290 and the number of times C happens is 115.
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P (A) and is given by
P(A) = `m/n`
Therefore, we have
P(A) = `95/500`
=0.19
P(B) = `290/500`
= 0.58
P(c) = `115/500`
=0.23
APPEARS IN
संबंधित प्रश्न
1500 families with 2 children were selected randomly, and the following data were recorded:-
Number of girls in a family | 2 | 1 | 0 |
Number of families | 475 | 814 | 211 |
Compute the probability of a family, chosen at random, having
(i) 2 girls (ii) 1 girl (iii) No girl
Also check whether the sum of these probabilities is 1.
The distance (in km) of 40 engineers from their residence to their place of work were found as follows.
5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |
What is the empirical probability that an engineer lives:-
(i) less than 7 km from her place of work?What is the empirical probability that an engineer lives:
(ii) more than or equal to 7 km from her place of work?
(iii) within 1/2 km from her place of work?
Three coins are tossed simultaneously 100 times with the following frequencies of different outcomes:
Outcome: | No head | One head | Two heads | Three heads |
Frequency: | 14 | 38 | 36 | 12 |
If the three coins are simultaneously tossed again, compute the probability of:
(i) 2 heads coming up.
(ii) 3 heads coming up.
(iii) at least one head coming up.
(iv) getting more heads than tails.
(v) getting more tails than heads.
In a cricket match, a batsman hits a boundary 6 times out of 30 balls he plays.
(i) he hits boundary
(ii) he does not hit a boundary.
The blood groups of 30 students of class IX are recorded as follows:
A | B | O | O | AB | O | A | O | B | A | O | B | A | O | O |
A | AB | O | A | A | O | O | AB | B | A | O | B | A | B | O |
(i) A
(ii) B
(iii) AB
(iv) O
Eleven bags of wheat flour, each marked 5 Kg, actually contained the following weights of flour (in kg):
4.97, 5.05, 5.08, 5.03, 5.00, 5.06, 5.08, 4.98, 5.04, 5.07, 5.00
Find the probability that any of these bags chosen at random contains more than 5 kg of flour.
Define an event.
A coin is tossed 1000 times, if the probability of getting a tail is 3/8, how many times head is obtained?
The percentage of attendance of different classes in a year in a school is given below:
Class: | X | IX | VIII | VII | VI | V |
Attendance: | 30 | 62 | 85 | 92 | 76 | 55 |
What is the probability that the class attendance is more than 75%?
Two dice are thrown simultaneously 500 times. Each time the sum of two numbers appearing on their tops is noted and recorded as given in the following table:
Sum | Frequency |
2 | 14 |
3 | 30 |
4 | 42 |
5 | 55 |
6 | 72 |
7 | 75 |
8 | 70 |
9 | 53 |
10 | 46 |
11 | 28 |
12 | 15 |
If the dice are thrown once more, what is the probability of getting a sum between 8 and 12?