Advertisements
Advertisements
प्रश्न
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Relative error
उत्तर
We know that Area of the circular plate A(r) = πr2, A'(r) = 2πr
Change in Area = A’(12.5)(0.15) = 3.75π cm2
Exact calculation of the change in Area = A(12.65) – A(12.5)
= 160.0225π – 156.25π
= 3.7725π cm2
Relative error = `("Actual value" - "Approximate value")/"Actual value"`
= `(3.7725pi - 3.75pi)/(3.7725pi)`
= `(0.0225pi)/(3.7725pi)`
= 0.006 cm2
APPEARS IN
संबंधित प्रश्न
Use the linear approximation to find approximate values of `(123)^(2/3)`
Use the linear approximation to find approximate values of `root(4)(15)`
Use the linear approximation to find approximate values of `root(3)(26)`
Find a linear approximation for the following functions at the indicated points.
g(x) = `sqrt(x^2 + 9)`, x0 = – 4
Find a linear approximation for the following functions at the indicated points.
h(x) = `x/(x + 1), x_0` = 1
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the surface area
Find the differential dy for the following functions:
y = `(1 - 2x)^3/(3 - 4x)`
Find the differential dy for the following functions:
y = `"e"^(x^2 - 5x + 7) cos(x^2 - 1)`
Find df for f(x) = x2 + 3x and evaluate it for x = 2 and dx = 0.1
Find df for f(x) = x2 + 3x and evaluate it for x = 3 and dx = 0.02
Assume that the cross-section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much is cross-sectional area increased approximately?
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 4 to 4.1 hours?
Choose the correct alternative:
A circular template has a radius of 10 cm. The measurement of the radius has an approximate error of 0.02 cm. Then the percentage error in the calculating the area of this template is
Choose the correct alternative:
The change in the surface area S = 6x2 of a cube when the edge length varies from x0 to x0 + dx is
Choose the correct alternative:
The approximate change in volume V of a cube of side x meters caused by increasing the side by 1% is
Choose the correct alternative:
If f(x) = `x/(x + 1)`, then its differential is given by