Advertisements
Advertisements
Question
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Relative error
Solution
We know that Area of the circular plate A(r) = πr2, A'(r) = 2πr
Change in Area = A’(12.5)(0.15) = 3.75π cm2
Exact calculation of the change in Area = A(12.65) – A(12.5)
= 160.0225π – 156.25π
= 3.7725π cm2
Relative error = `("Actual value" - "Approximate value")/"Actual value"`
= `(3.7725pi - 3.75pi)/(3.7725pi)`
= `(0.0225pi)/(3.7725pi)`
= 0.006 cm2
APPEARS IN
RELATED QUESTIONS
Let f(x) = `root(3)(x)`. Find the linear approximation at x = 27. Use the linear approximation to approximate `root(3)(27.2)`
Use the linear approximation to find approximate values of `(123)^(2/3)`
Use the linear approximation to find approximate values of `root(4)(15)`
The radius of a circular plate is measured as 12.65 cm instead of the actual length 12.5 cm. find the following in calculating the area of the circular plate:
Absolute error
A sphere is made of ice having radius 10 cm. Its radius decreases from 10 cm to 9.8 cm. Find approximations for the following:
Change in the surface area
Find the differential dy for the following functions:
y = `(1 - 2x)^3/(3 - 4x)`
Find the differential dy for the following functions:
y = `(3 + sin(2x))^(2/3)`
Find Δf and df for the function f for the indicated values of x, Δx and compare:
f(x) = x2 + 2x + 3, x = – 0.5, Δx = dx = 0.1
Assuming log10 e = 0.4343, find an approximate value of Iog10 1003
Assume that the cross-section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much is cross-sectional area increased approximately?
The relation between the number of words y a person learns in x hours is given by y = `sqrt(x), 0 ≤ x ≤ 9`. What is the approximate number of words learned when x changes from 4 to 4.1 hours?
Choose the correct alternative:
The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?
Choose the correct alternative:
If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is
Choose the correct alternative:
The change in the surface area S = 6x2 of a cube when the edge length varies from x0 to x0 + dx is
Choose the correct alternative:
The approximate change in volume V of a cube of side x meters caused by increasing the side by 1% is
Choose the correct alternative:
If f(x) = `x/(x + 1)`, then its differential is given by
Choose the correct alternative:
Linear approximation for g(x) = cos x at x = `pi/2` is