Advertisements
Advertisements
Question
Assuming log10 e = 0.4343, find an approximate value of Iog10 1003
Solution
Let f(x) = log 10 x then
f'(x) = `1/x` log10 e(log10 x = log10 e loge x)
f(x + Δx) – f(x) = f ‘(x) Δ
f(1003) – f(1000) = `0.4344/1000 xx 3`
log10 1003 – log10 1000 = 0.0013029
log10 1003 = log10 103 + 0.0013029
= 3 + 0.0013029
= 3.0013029
Approximate value of log10 1003 = 3.0013029
APPEARS IN
RELATED QUESTIONS
Use the linear approximation to find approximate values of `root(4)(15)`
Use the linear approximation to find approximate values of `root(3)(26)`
Find a linear approximation for the following functions at the indicated points.
f(x) = x3 – 5x + 12, x0 = 2
The time T, taken for a complete oscillation of a single pendulum with length l, is given by the equation T = `2pi sqrt(l/g)` where g is a constant. Find the approximate percentage error in the calculated value of T corresponding to an error of 2 percent in the value of l
Show that the percentage error in the nth root of a number is approximately `1/"n"` times the percentage error in the number
Find the differential dy for the following functions:
y = `(3 + sin(2x))^(2/3)`
Find the differential dy for the following functions:
y = `"e"^(x^2 - 5x + 7) cos(x^2 - 1)`
Find df for f(x) = x2 + 3x and evaluate it for x = 2 and dx = 0.1
Find df for f(x) = x2 + 3x and evaluate it for x = 3 and dx = 0.02
Assume that the cross-section of the artery of human is circular. A drug is given to a patient to dilate his arteries. If the radius of an artery is increased from 2 mm to 2.1 mm, how much is cross-sectional area increased approximately?
A coat of paint of thickness 0.2 cm is applied to the faces of cube whose edge is 10 cm. Use the differentials to find approximately how many cubic centimeters of paint is used to paint this cube. Also calculate the exact amount of paint used to paint this cube
Choose the correct alternative:
The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?
Choose the correct alternative:
If u(x, y) = `"e"^(x^2 + y^2)`, then `(delu)/(delx)` is equal to
Choose the correct alternative:
If f(x) = `x/(x + 1)`, then its differential is given by