Advertisements
Advertisements
प्रश्न
The speed of an express train is x km/hr arid the speed of an ordinary train is 12 km/hr less than that of the express train. If the ordinary train takes one hour longer than the express train to cover a distance of 240 km, find the speed of the express train.
उत्तर १
Let the speed of express train is x
Km/hr. Speed of ordinary train is (x - 12) km/hr.
Time require to cover for each train is `(240)/x` and `(240)/(x - 12)` respectively.
According to question
`(240)/(x - 12) - (240)/x = 1`
`(240x - 240 (x - 12))/((x - 12) (x)) = 1`
240x - 240 (x - 12) = x (x - 12)
x2 - 12x - 2880 = 0
(x - 60) (x + 48) = 0
∴ x = 60 km/hr.
Speed of the express train is 60 km/hr.
उत्तर २
Let the speed of express train = x km
Then speed of the ordinary train = (x – 12)km
Time is taken to cover 240km by the express
train = `(240)/x"hours"`
Time taken to cover 240km by the ordinary
train = `(240)/(x - 12)"hours"`
According to the condition,
`(240)/(x - 12) - (240)/x` = 1
⇒ `240[(1)/(x - 12) - (1)/x]` = 1
⇒ `240[(x - x + 12)/(x(x - 12))]` = 1
⇒ `240[(12)/(x^2 - 12x)]` = 1
⇒ 2880 = x2 - 12x
⇒ x2 - 12x - 2880 = 0
⇒ x2 - 60x + 48x - 2880 = 0
⇒ x(x - 60) + 48(x - 60) = 0
⇒ (x - 60)(x + 48) = 0
⇒ x = 60 or x = -48
⇒ x = 60 ...(Rejacting x = -48, as speed can't be negative)
Hence, speed of the express train = 60km/h.
संबंधित प्रश्न
Solve for x
`(2x)/(x-3)+1/(2x+3)+(3x+9)/((x-3)(2x+3)) = 0, x!=3,`
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects
Solve the following quadratic equations by factorization:
(2x + 3)(3x − 7) = 0
Solve the following quadratic equations by factorization:
\[3\left( \frac{3x - 1}{2x + 3} \right) - 2\left( \frac{2x + 3}{3x - 1} \right) = 5; x \neq \frac{1}{3}, - \frac{3}{2}\]
Solve the following quadratic equations by factorization:
\[3\left( \frac{7x + 1}{5x - 3} \right) - 4\left( \frac{5x - 3}{7x + 1} \right) = 11; x \neq \frac{3}{5}, - \frac{1}{7}\]
Solve the following equation: 25x (x + 1) = -4
A two digit number is such that the product of its digit is 8. When 18 is subtracted from the number, the digits interchange its place. Find the numbers.
Write the number of zeroes in the end of a number whose prime factorization is 22 × 53 × 32 × 17.
The polynomial equation x(x + 1) + 8 = (x + 2) (x – 2) is:
Find a natural number whose square diminished by 84 is equal to thrice of 8 more than the given number.