Advertisements
Advertisements
प्रश्न
A car covers a distance of 400 km at a certain speed. Had the speed been 12 km/hr more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car.
उत्तर १
Let the original speed of the car be x
km/hr,
so, Time taken by car = `(400)/x"hrs"`.
Again, Speed = (x + 12) km/hr
Time taken by car = `(400)/(x + 12)`
so, `(400)/x - (400)/(x + 12) = 1 "hr" + (40)/(60)`
`400((x + 12 - x))/(x (x + 12)) = (5)/(3)`
`(4800)/(x^2 + 12x) = (5)/(3)`
⇒ 5 (x2 + 12x) = 14,400
⇒ x2 + 12x - 2,880 = 0
⇒ x2 + 60x - 48x - 2,880 = 0
⇒ x (x + 60) - 48 (x + 60) = 0
⇒ (x + 60) (x - 48) = 0
Either, x + 60 = 0
x = -60 ...(Neglect, Speed can't be negative)
or
x - 48 = 0
x = 48
⇒ Original speed of the car is 48 km/hr.
उत्तर २
Let the original speed of the car = x km/h.
Distance covered = 400km
Time taken to cover 400km = `(400)/x"h"`
In second case,
Speed of car = (x + 12)km/h
New time taken to cover 400km = `(400)/(x + 12)"h"`
According to the condition
`(400)/x - (400)/(x + 12)`
= `1(40)/(60)`
= `1(2)/(3)`
= `(5)/(3)`.
⇒ `400((x + 12 - x)/(x(x + 12))) = (5)/(3)`
⇒ `(400 xx 12)/(x^2 + 12x) = (5)/(3)`
400x 12 x 3 = 5x2 + 60x
⇒ 1400 = 5x2 + 60x
⇒ 5x2 + 60x - 14400 = 0
⇒ x2 + 12x - 2880 = 0 ...(dividing both side by 5)
⇒ x2 + 60x - 48x - 2880 = 0
⇒ x(x + 60) - 48(x + 60) = 0
⇒ (x + 60)(x - 48) = 0
⇒ x = 48
or
⇒ x = -60
⇒ x = 48 ...(Rejecting x = -60, being speed)
Hence, orginal speed of the car = 48km/h.
संबंधित प्रश्न
Find x in terms of a, b and c: `a/(x-a)+b/(x-b)=(2c)/(x-c)`
Solve the following quadratic equation for x : 4x2 − 4a2x + (a4 − b4) =0.
In a class test, the sum of Shefali’s marks in Mathematics and English is 30. Had she got 2 marks more in Mathematics and 3 marks less in English, the product of their marks would have been 210. Find her marks in the two subjects
Solve the following quadratic equations by factorization:
3x2 − 14x − 5 = 0
Solve the following quadratic equation by factorization:
`(x-5)(x-6)=25/(24)^2`
The difference of squares of two numbers is 180. The square of the smaller number is 8 times the larger number. Find two numbers.
A pole has to be erected at a point on the boundary of a circular park of diameter 13 meters in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 meters. Is it the possible to do so? If yes, at what distances from the two gates should the pole be erected?
Solve the following quadratic equations by factorization:
`(2x – 3)^2 = 49`
Solve equation using factorisation method:
4(2x – 3)2 – (2x – 3) – 14 = 0
Solve the following equation by factorization
`(2)/(x^2) - (5)/x + 2 = 0, x ≠ 0`