Advertisements
Advertisements
प्रश्न
By increasing the speed of a car by 10 km/hr, the time of journey for a distance of 72 km. is reduced by 36 minutes. Find the original speed of the car.
उत्तर
Let original speed be x km/hr.
∴ Time = `(72)/x "hr"`.
New speed = x + 10 km/hr.
∴ New time = `(72)/(x + 10)"hr".`
Difference in time = 36 mins.
∴ `(72)/x - (72)/(x + 10) = (36)/(60)`
`(72x + 720 - 72x)/(x(x + 10)) = (3)/(5)`
5 x 720 = 3 (x2 + 10x)
1,200 = x2 + 10x
x2 + 10x - 1,200 = 0
x2 + 40x - 30x - 1,200 = 0
x (x + 40) - 30 (x + 40) = 0
(x - 30) (x + 40) = 0
∴ x = 30
as x = -40 is not acceptable
∴ Original speed = 30km/hr.
APPEARS IN
संबंधित प्रश्न
Solve the following quadratic equations by factorization:
`1/(x-2)+2/(x-1)=6/x` , x ≠ 0
Find the consecutive even integers whose squares have the sum 340.
`7x^2+3x-4=0`
Solve the following quadratic equations by factorization: \[\frac{x + 1}{x - 1} + \frac{x - 2}{x + 2} = 4 - \frac{2x + 3}{x - 2}; x \neq 1, - 2, 2\]
Solve the following quadratic equations by factorization:
\[3\left( \frac{3x - 1}{2x + 3} \right) - 2\left( \frac{2x + 3}{3x - 1} \right) = 5; x \neq \frac{1}{3}, - \frac{3}{2}\]
The sum of the square of two numbers is 233. If one of the numbers is 3 less than twice the other number. Find the numbers.
The hypotenuse of a grassy land in the shape of a right triangle is 1 m more than twice the shortest side. If the third side is 7m more than the shortest side, find the sides of the grassy land.
Solve (x2 + 3x)2 - (x2 + 3x) -6 = 0.
Solve the following by reducing them to quadratic form:
`sqrt(x^2 - 16) - (x - 4) = sqrt(x^2 - 5x + 4)`.
The perimeter of a rectangular plot is 180 m and its area is 1800 m2. Take the length of the plot as x m. Use the perimeter 180 m to write the value of the breadth in terms of x. Use the values of length, breadth and the area to write an equation in x. Solve the equation to calculate the length and breadth of the plot.