मराठी

The speed of an ordinary train is x km per hr and that of an express train is (x + 25) km per hr. Find the time taken by each train to cover 300 km - Mathematics

Advertisements
Advertisements

प्रश्न

The speed of an ordinary train is x km per hr and that of an express train is (x + 25) km per hr.

  1. Find the time taken by each train to cover 300 km.
  2. If the ordinary train takes 2 hrs more than the express train; calculate speed of the express train.
बेरीज

उत्तर

i. Speed of ordinary train = x km/hr

Speed of express train = (x + 25) km/hr

Distance = 300 km

We know

`"Time" = "Distance"/"Speed"`

∴ Time taken by ordinary train to cover 300 km = `300/x` hrs

Time taken by express train to cover 300 km = `300/(x + 25)` hrs

ii. Given that the ordinary train takes 2 hours more than the express train to cover the distance.

Therefore,

`300/x - 300/(x + 25) = 2`

`(300x + 7500 - 300x)/(x(x + 25)) = 2`

`7500 = 2x^2 + 50x`

`2x^2 + 50x - 7500 = 0`

`x^2 + 25x - 3750 = 0`

`x^2 + 75x - 50x - 3750 = 0`

`x(x + 75) - 50(x + 75) = 0`

`(x + 75)(x - 50) = 0`

x = –75, 50

But, speed cannot be negative.

So, x = 50.

∴ Speed of the express train = (x + 25) km/hr = 75 km/hr.

shaalaa.com
Problems Based on Distance, Speed and Time
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Solving (simple) Problems (Based on Quadratic Equations) - Exercise 6 (C) [पृष्ठ ७३]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 6 Solving (simple) Problems (Based on Quadratic Equations)
Exercise 6 (C) | Q 1 | पृष्ठ ७३

संबंधित प्रश्‍न

A car covers a distance of 400 km at a certain speed. Had the speed been 12 km/h more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car.


If the speed of an aeroplane is reduced by 40 km/hr, it takes 20 minutes more to cover 1200 km. Find the speed of the aeroplane.


The distance by road between two towns A and B is 216 km and by rail it is 208 km. A car travels at a speed of x km/hr and the train travels at a speed which is 16 km/hr faster than the car. Calculate:

  1. the time taken by the car to reach town B from A, in terms of x;
  2. the time taken by the train to reach town B from A, in terms of x.
  3. If the train takes 2 hours less than the car, to reach town B, obtain an equation in x and solve it.
  4. Hence, find the speed of the train.

A bus covers a distance of 240 km at a uniform speed. Due to heavy rain its speed gets reduced by 10 km/h and as such it takes two hrs longer to cover the total distance. Assuming the uniform speed to be 'x' km/h, form an equation and solve it to evaluate 'x'.


A man covers a distance of 100 km, travelling with a uniform speed of x km/hr. Had the speed been 5 km/hr more it would have taken 1 hour less. Find x the original speed.


The given table shows the distance covered and the time taken by a train moving at a uniform speed along a straight track:

Distance (in m) 60 90 y
Time (in sec) 2 x 5

The values of x and y are:


A car travels a distance of 72 km at a certain average speed of x km per hour and then travels a distance of 81 km at an average speed of 6 km per hour more than its original average speed. If it takes 3 hours to complete the total journey then form a quadratic equation and solve it to find its original average speed.


The speed of a boat is 32 km/h. If the speed of stream is 8 km/h, the speed of boat upstream is ______.


The speed of train A is x km/h and speed of train B is (x – 5) km/h. How much time will each train take to cover 400 km?


A car is moving with a speed of 100 km/h. If the speed of car first increases by x% and then decreases by x%, the final speed of the car is 96 km/h. The value of x is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×