हिंदी

The speed of an ordinary train is x km per hr and that of an express train is (x + 25) km per hr. Find the time taken by each train to cover 300 km - Mathematics

Advertisements
Advertisements

प्रश्न

The speed of an ordinary train is x km per hr and that of an express train is (x + 25) km per hr.

  1. Find the time taken by each train to cover 300 km.
  2. If the ordinary train takes 2 hrs more than the express train; calculate speed of the express train.
योग

उत्तर

i. Speed of ordinary train = x km/hr

Speed of express train = (x + 25) km/hr

Distance = 300 km

We know

`"Time" = "Distance"/"Speed"`

∴ Time taken by ordinary train to cover 300 km = `300/x` hrs

Time taken by express train to cover 300 km = `300/(x + 25)` hrs

ii. Given that the ordinary train takes 2 hours more than the express train to cover the distance.

Therefore,

`300/x - 300/(x + 25) = 2`

`(300x + 7500 - 300x)/(x(x + 25)) = 2`

`7500 = 2x^2 + 50x`

`2x^2 + 50x - 7500 = 0`

`x^2 + 25x - 3750 = 0`

`x^2 + 75x - 50x - 3750 = 0`

`x(x + 75) - 50(x + 75) = 0`

`(x + 75)(x - 50) = 0`

x = –75, 50

But, speed cannot be negative.

So, x = 50.

∴ Speed of the express train = (x + 25) km/hr = 75 km/hr.

shaalaa.com
Problems Based on Distance, Speed and Time
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Solving (simple) Problems (Based on Quadratic Equations) - Exercise 6 (C) [पृष्ठ ७३]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 6 Solving (simple) Problems (Based on Quadratic Equations)
Exercise 6 (C) | Q 1 | पृष्ठ ७३

संबंधित प्रश्न

A car covers a distance of 400 km at a certain speed. Had the speed been 12 km/h more, the time taken for the journey would have been 1 hour 40 minutes less. Find the original speed of the car.


If the speed of a car is increased by 10 km per hr, it takes 18 minutes less to cover a distance of 36 km. Find the speed of the car.


If the speed of an aeroplane is reduced by 40 km/hr, it takes 20 minutes more to cover 1200 km. Find the speed of the aeroplane.


Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels 5 km/hr faster than the second train. If after 2 hours, they are 50 km apart, find the speed of each train.


An aeroplane travelled a distance of 400 km at an average speed of x km/hr. On the return journey, the speed was increased by 40 km/hr. Write down an expression for the time taken for:

  1. the onward journey;
  2. the return journey.

If the return journey took 30 minutes less than the onward journey, write down an equation in x and find its value.


A man covers a distance of 100 km, travelling with a uniform speed of x km/hr. Had the speed been 5 km/hr more it would have taken 1 hour less. Find x the original speed.


A car travels a distance of 72 km at a certain average speed of x km per hour and then travels a distance of 81 km at an average speed of 6 km per hour more than its original average speed. If it takes 3 hours to complete the total journey then form a quadratic equation and solve it to find its original average speed.


The speed of a boat is 32 km/h. If the speed of stream is 8 km/h, the speed of boat upstream is ______.


The speed of train A is x km/h and speed of train B is (x – 5) km/h. How much time will each train take to cover 400 km?


The speed of a boat in still water is 15 km/h and speed of stream is 5 km/h. The boat goes x km downstream and then returns back to the point of start is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×