Advertisements
Advertisements
प्रश्न
The substance ‘X’, when dissolved in solvent water gave molar mass corresponding to the molecular formula ‘X3’. The van’t Hoff factor (i) is _______.
(A) 3
(B) 0.33
(C) 1.3
(D) 1
उत्तर
(B) 0.33
van’t Hoff factor (i) = Theoreticalmolecular mass/Observed molecular mass
= 1/3
= 0.33
APPEARS IN
संबंधित प्रश्न
Derive van’t Hoff general solution equation
3.9 g of benzoic acid dissolved in 49 g of benzene shows a depression in freezing point of 1.62 K. Calculate the van't Hoff factor and predict the nature of solute (associated or dissociated).
(Given : Molar mass of benzoic acid = 122 g mol−1, Kf for benzene = 4.9 K kg mol−1)
Calculate the amount of benzoic acid (C6H5COOH) required for preparing 250 mL of 0.15 M solution in methanol.
19.5 g of CH2FCOOH is dissolved in 500 g of water. The depression in the freezing point of water observed is 1.0°C. Calculate the van’t Hoff factor and dissociation constant of fluoroacetic acid.
How will you convert the following in not more than two steps:
Benzoic acid to Benzaldehyde
Give reasons for the following
Elevation of the boiling point of 1 M KCl solution is nearly double than that of 1 M sugar solution.
Predict whether van’t Hoff factor, (i) is less than one or greater than one in the following:
CH3COOH dissolved in water
The freezing point depression constant for water is 1.86° K Kg mol-1. If 5 g Na2SO4 is dissolved in 45 g water, the depression in freezing point is 3.64°C. The Vant Hoff factor for Na2SO4 is ______.
Phenol dimerizes in benzene having van’t Hoff factor 0.54. What is the degree of association?
We have three aqueous solutions of NaCl labelled as ‘A’, ‘B’ and ‘C’ with concentrations 0.1 M, 0.01 M and 0.001 M, respectively. The value of van’t Hoff factor for these solutions will be in the order ______.
The values of Van’t Hoff factors for KCl, NaCl and K2SO4, respectively, are ______.
Van’t Hoff factor i is given by the expression:
(i) i = `"Normal molar mass"/"Abnormal molar mass"`
(ii) i = `"Abnormal molar mass"/"Normal molar mass"`
(iii) i = `"Observed colligative property"/"Calculated colligative property"`
(iv) i = `"Calculated colligative property"/"Observed colligative property"`
What is the expected each water van't Hoff factor for and K4[F4(CN6)] when it completely dissociated in waters.
Maximum lowering of vapour pressure is observed in the case of ______.
The degree of dissociation of Ca(NO3)2 in a dilute aqueous solution containing 7 g of the salt per 100 g of water at 100°C is 70%. If the vapour pressure of water at 100°C is 760 mm. The vapour pressure of the solution is ______ mm.
Consider the reaction
\[\begin{bmatrix}\begin{array}{cc}
\phantom{.......}\ce{CH3}\\
\phantom{....}|\\
\ce{CH3CH2CH2 - \overset{⊕}{N} - CH2CH3}\\
\phantom{....}|\\
\phantom{.......}\ce{CH3}
\end{array}\end{bmatrix}\]\[\ce{OH^- ->[Heat] ?}\]
Which of the following is formed in a major amount?
A molecule M associates in a given solvent according to the equation \[\ce{M <=> (M)_n}\]. For a certain concentration of M, the van't Hoff factor was found to be 0.9 and the fraction of associated molecules was 0.2. The value of n is ______.
Why is the value of van't Hoff factor for ethanoic acid in benzene close to 0.5?
Why is boiling point of 1 M NaCl solution more than that of 1 M glucose solution?
Calculate Van't Hoff factor for an aqueous solution of K3 [Fe(CN)6] if the degree of dissociation (α) is 0.852. What will be boiling point of this solution if its concentration is 1 molal? (Kb = 0.52 K kg/mol)