मराठी

The Sum of 5th and 9th Terms of an A.P. is 30. If Its 25th Term is Three Times Its 8th Term, Find the A.P. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of 5th and 9th terms of an A.P. is 30. If its 25th term is three times its 8th term, find the A.P.

थोडक्यात उत्तर

उत्तर

Let a be the first term and d be the common difference.

We know that, nth term = an a + (n − 1)d

According to the question,

a5 + a9 = 30
⇒ a + (5 − 1)d + a + (9 − 1)= 30
⇒ a + 4d + a + 8d = 30
⇒ 2a + 12d = 30
⇒ a + 6d = 15       .... (1)

Also, a25 = 3(a8)
⇒ a + (25 − 1)d = 3[a + (8 − 1)d]
⇒ a + 24d = 3a + 21d
⇒ 3a − a = 24d − 21d
⇒ 2a = 3d
⇒ a = \[\frac{3}{2}\] d   ....(2)
Substituting the value of (2) in (1), we get

\[\frac{3}{2}\] + 6d = 15
⇒ 3+ 12= 15 × 2
⇒ 15= 30
⇒ = 2
⇒ a =  \[\frac{3}{2}\]    [From (1)]
⇒ a = 3
Thus, the A.P. is 3, 5, 7, 9, .... .
 

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Arithmetic Progression - Exercise 5.4 [पृष्ठ २६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 5 Arithmetic Progression
Exercise 5.4 | Q 44 | पृष्ठ २६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×