English

The Sum of 5th and 9th Terms of an A.P. is 30. If Its 25th Term is Three Times Its 8th Term, Find the A.P. - Mathematics

Advertisements
Advertisements

Question

The sum of 5th and 9th terms of an A.P. is 30. If its 25th term is three times its 8th term, find the A.P.

Answer in Brief

Solution

Let a be the first term and d be the common difference.

We know that, nth term = an a + (n − 1)d

According to the question,

a5 + a9 = 30
⇒ a + (5 − 1)d + a + (9 − 1)= 30
⇒ a + 4d + a + 8d = 30
⇒ 2a + 12d = 30
⇒ a + 6d = 15       .... (1)

Also, a25 = 3(a8)
⇒ a + (25 − 1)d = 3[a + (8 − 1)d]
⇒ a + 24d = 3a + 21d
⇒ 3a − a = 24d − 21d
⇒ 2a = 3d
⇒ a = \[\frac{3}{2}\] d   ....(2)
Substituting the value of (2) in (1), we get

\[\frac{3}{2}\] + 6d = 15
⇒ 3+ 12= 15 × 2
⇒ 15= 30
⇒ = 2
⇒ a =  \[\frac{3}{2}\]    [From (1)]
⇒ a = 3
Thus, the A.P. is 3, 5, 7, 9, .... .
 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Arithmetic Progression - Exercise 5.4 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 5 Arithmetic Progression
Exercise 5.4 | Q 44 | Page 26
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×