Advertisements
Advertisements
प्रश्न
The sum of the first n terms of an A.P. is 4n2 + 2n. Find the nth term of this A.P ?
उत्तर १
\[\text{The sum of n terms of an A . P . is given by}\ S_n = \frac{n}{2}\left( a + T_n \right), \text{where a} = 1^{st} \text{term and}\ T_n = n^{th} \text{term}.\]
\[\text{So, we have}: \]
\[4 n^2 + 2n = \frac{n}{2}\left( a + T_n \right)\]
\[ \Rightarrow n\left( 4n + 2 \right) = \frac{n}{2}\left( a + T_n \right)\]
\[ \Rightarrow 8n + 4 = a + T_n . . . (1)\]
Now, we have:
S1=a⇒a=412+21=6" data-mce-style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 16px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #212121; font-family: Roboto, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-style: initial; text-decoration-color: initial; position: relative;" data-mce-tabindex="0">\[S_1 = a\]
\[ \Rightarrow a = \left( 4 \left( 1 \right)^2 + 2\left( 1 \right) \right) = 6\]
Putting the value of a in equation (1), we get:
\[ \Rightarrow T_n = 8n - 2\]
उत्तर २
\[\text{The sum of n terms of an A . P . is given by}\ S_n = \frac{n}{2}\left( a + T_n \right), \text{where a} = 1^{st} \text{term and}\ T_n = n^{th} \text{term}.\]
\[\text{So, we have}: \]
\[4 n^2 + 2n = \frac{n}{2}\left( a + T_n \right)\]
\[ \Rightarrow n\left( 4n + 2 \right) = \frac{n}{2}\left( a + T_n \right)\]
\[ \Rightarrow 8n + 4 = a + T_n . . . (1)\]
Now, we have:
S1=a⇒a=412+21=6" data-mce-style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 16px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #212121; font-family: Roboto, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-style: initial; text-decoration-color: initial; position: relative;" data-mce-tabindex="0">\[S_1 = a\]
\[ \Rightarrow a = \left( 4 \left( 1 \right)^2 + 2\left( 1 \right) \right) = 6\]
Putting the value of a in equation (1), we get:
\[ \Rightarrow T_n = 8n - 2\]
APPEARS IN
संबंधित प्रश्न
Fill in the blank in the following table, given that a is the first term, d the common difference, and an nth term of the AP:
a | d | n | an |
7 | 3 | 8 | ______ |
In the following APs, find the missing term in the box:
`5, square, square, 9 1/2`
Find the next five terms of the following sequences given by
a1 = a2 = 2, an = an−1 − 3, n > 2
Next term of the AP `sqrt2, 3sqrt2, 5sqrt2,...` is ______.
20th term of the AP -5, -3, -1, 1, is ______.
The 10th term from the end of the A.P. 4, 9,14, …, 254 is ______.
How many numbers lie between 10 and 300, which when divided by 4 leave a remainder 3?
Two APs have the same common difference. The first term of one of these is –1 and that of the other is – 8. Then the difference between their 4th terms is ______.
The 4th term from the end of the AP: –11, –8, –5, ..., 49 is ______.
The sum of the first three terms of an A.P. is 33. If the product of the first and the third terms exceeds the second term by 29, find the A.P.