Advertisements
Advertisements
प्रश्न
The sum of the first n terms of an A.P. is 4n2 + 2n. Find the nth term of this A.P ?
उत्तर १
\[\text{The sum of n terms of an A . P . is given by}\ S_n = \frac{n}{2}\left( a + T_n \right), \text{where a} = 1^{st} \text{term and}\ T_n = n^{th} \text{term}.\]
\[\text{So, we have}: \]
\[4 n^2 + 2n = \frac{n}{2}\left( a + T_n \right)\]
\[ \Rightarrow n\left( 4n + 2 \right) = \frac{n}{2}\left( a + T_n \right)\]
\[ \Rightarrow 8n + 4 = a + T_n . . . (1)\]
Now, we have:
S1=a⇒a=412+21=6" data-mce-style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 16px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #212121; font-family: Roboto, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-style: initial; text-decoration-color: initial; position: relative;" data-mce-tabindex="0">\[S_1 = a\]
\[ \Rightarrow a = \left( 4 \left( 1 \right)^2 + 2\left( 1 \right) \right) = 6\]
Putting the value of a in equation (1), we get:
\[ \Rightarrow T_n = 8n - 2\]
उत्तर २
\[\text{The sum of n terms of an A . P . is given by}\ S_n = \frac{n}{2}\left( a + T_n \right), \text{where a} = 1^{st} \text{term and}\ T_n = n^{th} \text{term}.\]
\[\text{So, we have}: \]
\[4 n^2 + 2n = \frac{n}{2}\left( a + T_n \right)\]
\[ \Rightarrow n\left( 4n + 2 \right) = \frac{n}{2}\left( a + T_n \right)\]
\[ \Rightarrow 8n + 4 = a + T_n . . . (1)\]
Now, we have:
S1=a⇒a=412+21=6" data-mce-style="display: inline; font-style: normal; font-weight: 400; line-height: normal; font-size: 16px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: 0px; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; color: #212121; font-family: Roboto, sans-serif; font-variant-ligatures: normal; font-variant-caps: normal; orphans: 2; widows: 2; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-style: initial; text-decoration-color: initial; position: relative;" data-mce-tabindex="0">\[S_1 = a\]
\[ \Rightarrow a = \left( 4 \left( 1 \right)^2 + 2\left( 1 \right) \right) = 6\]
Putting the value of a in equation (1), we get:
\[ \Rightarrow T_n = 8n - 2\]
APPEARS IN
संबंधित प्रश्न
In the following APs, find the missing terms in the boxes:
`square, 38, square, square, square, -22`
Two APs have the same common difference. The difference between their 100th term is 100, what is the difference between their 1000th terms?
How many three-digit numbers are divisible by 7?
Write the first five terms of the following sequences whose nth terms are:
`a_n = 3^n`
Find the next five terms of the following sequences given by:
`a_1 = -1, a_n = (a_n - 1)/n, n>= 2`
The 4th term of an A.P. is three times the first and the 7th term exceeds twice the third term by 1. Find the first term and the common difference.
An A.P. consists of 60 terms. If the first and the last terms be 7 and 125 respectively, find the 32nd term.
The 17th term of an A.P. is 5 more than twice its 8th term. If the 11th term of the A.P. is 43, find the nth term.
The common difference of the AP … -4, -2, 0, 2, …. is ______.
If the 9th term of an AP is zero, prove that its 29th term is twice its 19th term.