मराठी

The sum of the digits of a 2-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the digits of a 2-digit number is 9. Also, nine times this number is twice the number obtained by reversing the order of the digits. Find the number.

बेरीज

उत्तर

Let the number be 10x + y.

Given, x + y = 9  ...(i)

According to the question,

9(10x + y) = 2(10y + x)

∴ 90x + 9y = 20y + 2x

∴ 88x − 11y = 0

∴ 8x − y = 0  ...(ii)

On adding Eqs. (i) and (ii), we get

9x = 9

∴ x = 1

On substituting x = 1 in Eq. (i), we get

1 + y = 9

∴ y = 8

The number is 10x + y = 10 × 1 + 8 = 18

Therefore, x = 1 and y = 8 are the required digits and the number is 18.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (February) Basic Official
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×