मराठी

The sum of three consecutive terms of an A.P. is 21 and the sum of their squares is 165. Find these terms. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of three consecutive terms of an A.P. is 21 and the sum of their squares is 165. Find these terms.

बेरीज

उत्तर

Let the three consecutive terms in A.P. be a – d, a and a + d.

∴ (a – d) + a + (a + d) = 21

`=>` a = 7   ...(1) 

Also, (a – d)2 + a2 + (a + d)2 = 165

`=>` a2 + d2 - 2ad + a2 + a2 + d2 + 2ad = 165

`=>` 3a2 + 2d2 = 165

`=>` 3 × (7)2 + 2d2 = 165   ...[From (1)]

`=>` 3 × 49 + 2d2 = 165 

`=>` 147 + 2d2 = 165 

`=>` 2d2 = 18

`=>` d2 = 9

`=>` d = ±3 

When a = 7 and d = 3

Required terms = a – d, a and a + d

= 7 – 3, 7, 7 + 3

= 4, 7, 10 

When a = 7 and d = –3

Required terms = a – d, a and a + d

= 7 – (–3), 7, 7 + (–3)

= 10, 7, 4

shaalaa.com
Simple Applications of Arithmetic Progression
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Arithmetic Progression - Exercise 10 (D) [पृष्ठ १४६]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
पाठ 10 Arithmetic Progression
Exercise 10 (D) | Q 2 | पृष्ठ १४६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×