Advertisements
Advertisements
प्रश्न
There are 5 teachers and 20 students. Out of them a committee of 2 teachers and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees a particular student is excluded?
उत्तर
The number of teachers = 5
Number of students = 20
The number of ways of selecting 2 teachers from 5 teachers is
= 5C2 ways.
= `(5!)/(2! xx (5 - 2)!)`
= `(5!)/(2! xx 3!)`
= `(5 xx 4 xx 3!)/(2! xx 3!)`
= `(5 xx 4)/(2 xx 1)`
= 10 ways
The number of ways of selecting 3 students from 20 students is
= 20C3
= `(20!)/(3! xx (20 - 3)!)`
= `(20!)/(3! xx 17!)`
= `(20 xx 19 xx 18 xx 17!)/(3! xx 17!)`
= `(20 xx 19 xx 18)/(3 xx 2 xx 1)`
= 20 × 19 × 3
= 1140 ways
∴ The total number of selection of the committees with 2 teachers and 5 students is
= 10 × 1140
= 11400
A particular student is excluded.
The number of ways of selecting 2 teachers from 5 teachers is
= 5C2
= `(5!)/(2! xx (5 - 2)!)`
= `(5!)/(2! xx 3!)`
= `(5 xx 4 xx 3!)/(2! xx 3!)`
= `(5 xx 4)/(2 xx 1)`
= 5 × 2
= 10
A particular student is excluded
∴ The number of remaining students = 19
Number of ways of selecting 3 students from 19 students
= 19C3
= `(19!)/(3! xx (19 - 3)!)`
= `(19!)/(3! xx 16!)`
= `(19 xx 18 xx 17 xx 16!)/(3! xx 16!)`
= `(19 xx 18 xx 17)/(3!)`
= `(19 xx 18 xx 17)/(3 xx 2 xx 1)`
= 19 × 3 × 17
= 969
∴ The required number of committees
= 10 × 969
= 9690
APPEARS IN
संबंधित प्रश्न
If nPr = 1680 and nCr = 70, find n and r.
There are 18 guests at a dinner party. They have to sit 9 guests on either side of a long table, three particular persons decide to sit on one side and two others on the other side. In how many ways can the guests to be seated?
How many code symbols can be formed using 5 out of 6 letters A, B, C, D, E, F so that the letters
- cannot be repeated
- can be repeated
- cannot be repeated but must begin with E
- cannot be repeated but end with CAB.
Let there be 3 red, 2 yellow and 2 green signal flags. How many different signals are possible if we wish to make signals by arranging all of them vertically on a staff?
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines is:
If `""^15"C"_(2"r" - 1) = ""^15"C"_(2"r" + 4)`, find r
Prove that `""^35"C"_5 + sum_("r" = 0)^4 ""^((39 - "r"))"C"_4` = 40C5
If `""^(("n" + 1))"C"_8 : ""^(("n" - 3))"P"_4` = 57 : 16, find the value of n
There are 5 teachers and 20 students. Out of them a committee of 2 teachers and 3 students is to be formed. Find the number of ways in which this can be done. Further find in how many of these committees a particular teacher is included?
Find the number of ways of forming a committee of 5 members out of 7 Indians and 5 Americans, so that always Indians will be the majority in the committee
7 relatives of a man comprises 4 ladies and 3 gentlemen, his wife also has 7 relatives; 3 of them are ladies and 4 gentlemen. In how many ways can they invite a dinner party of 3 ladies and 3 gentlemen so that there are 3 of man’s relative and 3 of the wife’ s relatives?
How many triangles can be formed by joining 15 points on the plane, in which no line joining any three points?
How many triangles can be formed by 15 points, in which 7 of them lie on one line and the remaining 8 on another parallel line?
There are 11 points in a plane. No three of these lie in the same straight line except 4 points which are collinear. Find the number of triangles that can be formed for which the points are their vertices?
Choose the correct alternative:
The number of ways in which a host lady invite 8 people for a party of 8 out of 12 people of whom two do not want to attend the party together is
Choose the correct alternative:
The number of parallelograms that can be formed from a set of four parallel lines intersecting another set of three parallel lines
Choose the correct alternative:
`""^(("n" - 1))"C"_"r" + ""^(("n" - 1))"C"_(("r" - 1))` is
Choose the correct alternative:
The number of rectangles that a chessboard has ______