Advertisements
Advertisements
प्रश्न
Three equal cubes are placed adjacently in a row. Find the ratio of total surface area of the new cuboid to that of the sum of the surface areas of the three cubes.
उत्तर
\[\text { Suppose that the side of the cube }= x cm\]
\[\text { Surface area of the cube = 6 }\times \text { (side })^2 = 6 \times x^2 = 6 x^2 {cm}^2 \]
\[\text { i . e . , the sum of the surface areas of three such cubes }= 6 x^2 + 6 x^2 + 6 x^2 = 18 x^2 {cm}^2 \]
\[\text { Now, these three cubes area placed together to form a cuboid . } \]
\[\text { Then the length of the new cuboid will be 3 times the edge of the cube } = 3 \times x = 3x cm\]
\[\text { Breadth of the cuboid = x cm }\]
\[\text { Height of the cuboid = x cm }\]
\[ \therefore\text { Total surface area of the cuboid = 2 } \times\text { (length }\times\text { breadth + breadth }\times\text { height + length } \times\text { height) }\]
\[ = 2 \times (3x \times x + x \times x + 3x \times x)\]
\[ = 2 \times (3 x^2 + x^2 + 3 x^2 )\]
\[ = 2 \times (7 x^2 )\]
\[ = 14 x^2 cm\]
2
i.e., the ratio of the total surface area cuboid to the sum of the surface areas of the three cubes =
\[14 x^2 c m^2 : 18 x^2 c m^2 \]
\[ = 7: 9\]
APPEARS IN
संबंधित प्रश्न
Find the volume in cubic decimetre of the cube whose side is 1.5 m.
Find the volume in cubic decimetre of the cube whose side is 75 cm.
Find the surface area of a cube whose edge is 3 cm.
Find the surface area of a cube whose edge is 6 m .
Find the surface area of a cube whose volume is 216 dm3.
Four identical cubes are joined end to end to form a cuboid. If the total surface area of the resulting cuboid as 648 m2; find the length of the edge of each cube. Also, find the ratio between the surface area of the resulting cuboid and the surface area of a cube.
The square on the diagonal of a cube has an area of 1875 sq. cm. Calculate:
(i) The side of the cube.
(ii) The total surface area of the cube.
The length, breadth, and height of a cuboid are in the ratio 6: 5 : 3. If its total surface area is 504 cm2, find its volume.
The volume of a cube is 1331 cm3. Find its total surface area.
A river 2 m deep and 45 m wide is flowing at the rate of 3 km per hour. Find the amount of water in cubic metres that runs into the sea per minute.