Advertisements
Advertisements
प्रश्न
Tritium is an isotope of hydrogen whose nucleus Triton contains 2 neutrons and 1 proton. Free neutrons decay into `p + bare + barν`. If one of the neutrons in Triton decays, it would transform into He3 nucleus. This does not happen. This is because ______.
पर्याय
triton energy is less than that of a He3 nucleus.
the electron created in the beta decay process cannot remain in the nucleus.
both the neutrons in triton have to decay simultaneously resulting in a nucleus with 3 protons, which is not a He3 nucleus.
because free neutrons decay due to external perturbations which is absent in a triton nucleus.
उत्तर
Tritium is an isotope of hydrogen whose nucleus Triton contains 2 neutrons and 1 proton. Free neutrons decay into `p + bare + barν`. If one of the neutrons in Triton decays, it would transform into He3 nucleus. This does not happen. This is because triton energy is less than that of a He3 nucleus.
Explanation:
Isotopes: The atoms of elements having the same atomic number but different mass numbers are called isotopes. All isotopes have the same chemical properties. The isotopes of some elements are the following:
1H1, 1H2, 1H3
8I16, 8I17, 8I16
2He3, 2He4
17CI35, 17Cl37
92U235, 92U238
The nucleus of Tritium (1H3) contains 1 proton and 2 neutrons. In a neutron that decays as `n -> p + bare + barv`, the nucleus may have 2 protons and one neutron, i.e., tritium will transform into 2He3 (2 protons and 1 neutron).
Triton energy is less than that of the 2He3 nucleus, i.e., transformation is not allowed energetically.
APPEARS IN
संबंधित प्रश्न
Is the nucleus formed in the decay of the nucleus `""_11^22Na`, an isotope or isobar?
Is it easier to take out a nucleon (a) from carbon or from iron (b) from iron or from lead?
Find the binding energy per nucleon of `""_79^197"Au"` if its atomic mass is 196.96 u.
(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)
Determine the binding energy per nucleon of the americium isotope \[\ce{_95^244Am}\], given the mass of \[\ce{_95^244Am}\] to be 244.06428 u.
The difference in mass of a nucleus and its constituents is called ______.
The deuteron is bound by nuclear forces just as H-atom is made up of p and e bound by electrostatic forces. If we consider the force between neutron and proton in deuteron as given in the form of a Coulomb potential but with an effective charge e′: F = `1/(4πε_0) e^('2)/r` estimate the value of (e’/e) given that the binding energy of a deuteron is 2.2 MeV.
Calculate the binding energy of an alpha particle in MeV. Given
mass of a proton = 1.007825 u
mass of a neutron = 1.008665 u
mass of He nucleus = 4.002800 u
1u = 931 MeV/c2
State the significance of binding energy per nucleon.
Which of the following quantities is a measure of stability of nucleus?
Find the binding energy per nucleon of 235U based on the information given below.
Mass(u) | |
mass of neutral `""_92^235"U"` | 235.0439 |
mass of a proton | 1.0073 |
mass of a neutron | 1.0087 |