Advertisements
Advertisements
प्रश्न
Two angles of a polygon are right angles and the remaining are 120° each. Find the number of sides in it.
उत्तर
Let the number of sides = n
Sum of interior angles = (n - 2) × 180°
= 180n - 360°
Sum of 2 right angles = 2 × 90° = 180°
∴ Sum of other angles = 180n - 360° - 180°
= 180n - 540°
No.of vertices at which these angles are formed = n - 2
∴ Each interior angle = `(180"n" - 540)/("n" - 2)`
∴ `(180 "n" - 540)/("n" - 2) = 120°`
180n - 540 = 120n - 240
180n - 120n = - 240 + 540
60n = 300
n = `300/60`
n = 5
APPEARS IN
संबंधित प्रश्न
Calculate the sum of angle of a polygon with: 10 sides
Find the number of sides in a polygon if the sum of its interior angle is: 900°
Find the number of sides in a polygon if the sum of its interior angle is: 1620°
Find the number of sides in a polygon if the sum of its interior angle is: 16 right-angles.
Find the number of sides in a polygon if the sum of its interior angle is: 32 right-angles.
Is it possible to have a polygon, whose sum of interior angle is: 870°
Is it possible to have a polygon, whose sum of interior angle is: 4500°
The interior angles of a pentagon are in the ratio 4 : 5 : 6 : 7 : 5. Find each angle of the pentagon.
The angles of a hexagon are x + 10°, 2x + 20°, 2x – 20°, 3x – 50°, x + 40° and x + 20°. Find x.
In a pentagon, two angles are 40° and 60°, and the rest are in the ratio 1 : 3 : 7. Find the biggest angle of the pentagon.