Advertisements
Advertisements
प्रश्न
Two bodies of masses m1 and m2 and specific heat capacities s1 and s2 are connected by a rod of length l, cross-sectional area A, thermal conductivity K and negligible heat capacity. The whole system is thermally insulated. At time t = 0, the temperature of the first body is T1 and the temperature of the second body is T2 (T2 > T1). Find the temperature difference between the two bodies at time t.
उत्तर
Rate of transfer of heat from the rod is given by
`(DeltaQ)/(Deltat) = (KA(T_2 - T_1))/l`
Heat transfer from the rod in time ΔΔ t is given by
`(DeltaQ)/(Deltat) = (KA(T_2 - T_1))/l Deltat ............(1)`
Heat loss by the body at temperature T2 is equal to the heat gain by the body at temperature T1
Therefore, heat loss by the body at temperature t2 in time Δt is given by
`DeltaQ = m_2s_2(T_2 - T_2) ....(2)`
from equation (i) and (ii)
`m_2s_2(T_2 - T_2')= (KA(T_2 - T_1))/l Delta t`
`⇒ T_2' = T_2 - (KA(T_2 - T_1))/(l(m_2s_2)) Delta t`
This gives us the fall in the temperature of the body at temperature T2.
Similarly, rise in temperature of water at temperature T1 is given by
`T_1' = T_1 + (KA(T_2 - T_1))/(l(m_1s_1)) Delta t`
Change in the temperature is given by
`(T_2' - T_1') = (T_2 - T_1) - [(KA (T_2 - T_1))/(lm_1s_1) Deltat + (KA(T_2 - T_1))/(lm_2s_1)Delta t]`
`⇒(T_2' - T_1') - (T_2 - T_1) = - [(KA(T_2 - T
_1))/(lm_1s_1) Deltat + [(KA(T_2 - T
_1))/(lm_2s_2) Deltat]`
`rArr (DeltaT)/(Deltat)= (KA(T_2 - T_1))/l [1/(m_1s_1) + 1/(m_2 s_2)] Deltat`
`rArr 1/(T_2 - T_1) DeltaT =- (KA)/l [(m_1s_1 + m_2s_2)/(m_1s_1m_2s_2)] `
On integrating both the sides, we get
lim Δ t → 0
`int 1/(T_2 - T_1)dT = int - (KA)/l [( m_1s_1 + m_2s_2)/(m_1s_1m_2s_2) ]dt`
⇒ `In [T_2 - T_1] = - (KA)/l [( m_1s_1 + m_2s_2)/(m_1s_1m_2s_2)]t`
⇒ `(T_2 - T_1) = e^(-lamda t)`
Here , `lamda = "KA/l [ "m_1s_1 + m_2s_2"/"m_1s_1m_2s_2"]`
APPEARS IN
संबंधित प्रश्न
A solid object is placed in water contained in an adiabatic container for some time. The temperature of water falls during this period and there is no appreciable change in the shape of the object. The temperature of the solid object
A bullet of mass 20 g enters into a fixed wooden block with a speed of 40 m s−1 and stops in it. Find the change in internal energy during the process.
A brick weighing 4.0 kg is dropped into a 1.0 m deep river from a height of 2.0 m. Assuming that 80% of the gravitational potential energy is finally converted into thermal energy, find this thermal energy is calorie.
One end of a metal rod is kept in a furnace. In steady state, the temperature of the rod
A hot liquid is kept in a big room. The logarithm of the numerical value of the temperature difference between the liquid and the room is plotted against time. The plot will be very nearly
Water is boiled in a container having a bottom of surface area 25 cm2, thickness 1.0 mm and thermal conductivity 50 W m−1°C−1. 100 g of water is converted into steam per minute in the steady state after the boiling starts. Assuming that no heat is lost to the atmosphere, calculate the temperature of the lower surface of the bottom. Latent heat of vaporisation of water = 2.26 × 106 J kg−1.
A icebox almost completely filled with ice at 0°C is dipped into a large volume of water at 20°C. The box has walls of surface area 2400 cm2, thickness 2.0 mm and thermal conductivity 0.06 W m−1°C−1. Calculate the rate at which the ice melts in the box. Latent heat of fusion of ice = 3.4 × 105 J kg−1.
A pitcher with 1-mm thick porous walls contains 10 kg of water. Water comes to its outer surface and evaporates at the rate of 0.1 g s−1. The surface area of the pitcher (one side) = 200 cm2. The room temperature = 42°C, latent heat of vaporization = 2.27 × 106 J kg−1, and the thermal conductivity of the porous walls = 0.80 J s−1 m−1°C−1. Calculate the temperature of water in the pitcher when it attains a constant value.
The ends of a metre stick are maintained at 100°C and 0°C. One end of a rod is maintained at 25°C. Where should its other end be touched on the metre stick so that there is no heat current in the rod in steady state?
A metal rod of cross sectional area 1.0 cm2 is being heated at one end. At one time, the temperatures gradient is 5.0°C cm−1 at cross section A and is 2.5°C cm−1 at cross section B. Calculate the rate at which the temperature is increasing in the part AB of the rod. The heat capacity of the part AB = 0.40 J°C−1, thermal conductivity of the material of the rod = 200 W m−1°C−1. Neglect any loss of heat to the atmosphere
A hole of radius r1 is made centrally in a uniform circular disc of thickness d and radius r2. The inner surface (a cylinder a length d and radius r1) is maintained at a temperature θ1 and the outer surface (a cylinder of length d and radius r2) is maintained at a temperature θ2 (θ1 > θ2). The thermal conductivity of the material of the disc is K. Calculate the heat flowing per unit time through the disc.
Figure (28-E2) shows a copper rod joined to a steel rod. The rods have equal length and equal cross sectional area. The free end of the copper rod is kept at 0°C and that of the steel rod is kept at 100°C. Find the temperature at the junction of the rods. Conductivity of copper = 390 W m−1°C−1 and that if steel = 46 W m−1°C−1.
An aluminium rod and a copper rod of equal length 1.0 m and cross-sectional area 1 cm2 are welded together as shown in the figure . One end is kept at a temperature of 20°C and the other at 60°C. Calculate the amount of heat taken out per second from the hot end. Thermal conductivity of aluminium = 200 W m−1°C−1 and of copper = 390 W m−1°C−1.
Following Figure shows an aluminium rod joined to a copper rod. Each of the rods has a length of 20 cm and area of cross section 0.20 cm2. The junction is maintained at a constant temperature 40°C and the two ends are maintained at 80°C. Calculate the amount of heat taken out from the cold junction in one minute after the steady state is reached. The conductivites are KAt = 200 W m−1°C−1 and KCu = 400 W m−1°C−1.
The two rods shown in following figure have identical geometrical dimensions. They are in contact with two heat baths at temperatures 100°C and 0°C. The temperature of the junction is 70°C. Find the temperature of the junction if the rods are interchanged.
Find the rate of heat flow through a cross section of the rod shown in figure (28-E10) (θ2 > θ1). Thermal conductivity of the material of the rod is K.
A spherical ball of surface area 20 cm2 absorbs any radiation that falls on it. It is suspended in a closed box maintained at 57°C. (a) Find the amount of radiation falling on the ball per second. (b) Find the net rate of heat flow to or from the ball at an instant when its temperature is 200°C. Stefan constant = 6.0 × 10−8 W m−2 K−4.