मराठी

Two Long Coaxial Insulated Solenoids, S1 and S2 of Equal Lengths Are Wound One Over the Other as Shown in the Figure. a Steady Current "I" Flow Thought the Inner Solenoid S1 to the Other End B, Which is Connected to the Outer Solenoid S2 Through Which the Same Current "I" Flows in the Opposite Direction So as to Come Out at End A. - Physics

Advertisements
Advertisements

प्रश्न

Two long coaxial insulated solenoids, S1 and S2 of equal lengths are wound one over the other as shown in the figure. A steady current "I" flow thought the inner solenoid S1 to the other end B, which is connected to the outer solenoid S2 through which the same current "I" flows in the opposite direction so as to come out at end A. If n1 and n2 are the number of turns per unit length, find the magnitude and direction of the net magnetic field at a point (i) inside on the axis and (ii) outside the combined system

उत्तर

(i) The magnetic field due to a current carrying solenoid:

B=μ0ni

where, n = number of turns per unit length
             i = current through the solenoid

Now, the magnetic field due to solenoid S1 will be in the upward direction and the magnetic field due to S2 will be in the downward direction (by right-hand screw rule).

Bnet=BS1BS2

Bnet=μ0n1Iμ0n2I

=μ0I(n1n2)

In the upward direction

(ii) The magnetic field is zero outside a solenoid.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Obtain an expression for the energy stored in a solenoid of self-inductance ‘L’ when the current through it grows from zero to ‘I’.


An observer to the left of a solenoid of N turns each of cross section area 'A' observes that a steady current I in it flows in the clockwise direction. Depict the magnetic field lines due to the solenoid specifying its polarity and show that it acts as a bar magnet of magnetic moment m = NIA.

 


Derive an expression for the mutual inductance of two long co-axial solenoids of same length wound one over the other,


A closely wound solenoid 80 cm long has 5 layers of windings of 400 turns each. The diameter of the solenoid is 1.8 cm. If the current carried is 8.0 A, estimate the magnitude of B inside the solenoid near its centre.


Define self-inductance of a coil.


A wire AB is carrying a steady current of 10 A and is lying on the table. Another wire CD carrying 6 A is held directly above AB at a height of 2 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms−2]


 Draw and compare the pattern of the magnetic field lines in the two cases ?


How is the magnetic field inside a given solenoid made strong?


A tightly-wound, long solenoid is kept with its axis parallel to a large metal sheet carrying a surface current. The surface current through a width dl of the sheet is Kdl and the number of turns per unit length of the solenoid is n. The magnetic field near the centre of the solenoid is found to be zero. (a) Find the current in the solenoid. (b) If the solenoid is rotated to make its axis perpendicular to the metal sheet, what would be the magnitude of the magnetic field near its centre? 


A capacitor of capacitance 100 µF is connected to a battery of 20 volts for a long time and then disconnected from it. It is now connected across a long solenoid having 4000 turns per metre. It is found that the potential difference across the capacitor drops to 90% of its maximum value in 2.0 seconds. Estimate the average magnetic field produced at the centre of the solenoid during this period. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×