Advertisements
Advertisements
प्रश्न
Use this graph to explain the release of energy in both the processes of nuclear fusion and fission.
उत्तर
Nuclear fission: A very heavy nucleus (say A = 240) has lower binding energy per nucleon as compared to the nucleus with A = 120. Thus if the heavier nucleus breaks to the lighter nucleus with high binding energy per nucleon, nucleons are tightly bound. This implies that energy will be released in the process which justifies the energy release in fission reaction.
Nuclear fusion: When two light nuclei (A<10) are combined to form a heavier nuclei, the binding energy of the fused heavier nuclei is more than the binding energy per nucleon of the lighter nuclei. Thus the final system is more tightly bound than the initial system. Again the energy will be released in fusion reaction.
APPEARS IN
संबंधित प्रश्न
The neutron separation energy is defined as the energy required to remove a neutron from the nucleus. Obtain the neutron separation energies of the nuclei `""_20^41"Ca"` and `""_13^27 "Al"` from the following data:
`"m"(""_20^40"Ca")` = 39.962591 u
`"m"(""_20^41"Ca")` = 40.962278 u
`"m"(""_13^26"Al")` = 25.986895 u
`"m"(""_13^27"Al")` = 26.981541 u
Consider the fission of `""_92^238"U"` by fast neutrons. In one fission event, no neutrons are emitted and the final end products, after the beta decay of the primary fragments, are `""_58^140"Ce"` and `""_44^99"Ru"`. Calculate Q for this fission process. The relevant atomic and particle masses are
`"m"(""_92^238"U")` = 238.05079 u
`"m"(""_58^140"Ce")` = 139.90543 u
`"m"(""_44^99"Ru")` = 98.90594 u
What is meant by the terms half-life of a radioactive substance and binding energy of a nucleus?
Is it easier to take out a nucleon (a) from carbon or from iron (b) from iron or from lead?
If the nucleons of a nucleus are separated from each other, the total mass is increased. Where does this mass come from?
Binding energy per nucleon for helium nucleus (2 He) is 7.0 MeV Find value of mass defect for helium nucleus
In a nuclear reactor, what is the function of:
(i) The moderator
(ii) The control rods
(iii) The coolant
A body's centre of mass
Nuclei with magic no. of proton Z = 2, 8, 20, 28, 50, 52 and magic no. of neutrons N = 2, 8, 20, 28, 50, 82 and 126 are found to be very stable.
(i) Verify this by calculating the proton separation energy Sp for 120Sn (Z = 50) and 121Sb = (Z = 51).
The proton separation energy for a nuclide is the minimum energy required to separate the least tightly bound proton from a nucleus of that nuclide. It is given by `S_P = (M_(z-1^' N) + M_H - M_(ZN))c^2`.
Given 119In = 118.9058u, 120Sn = 119.902199u, 121Sb = 120.903824u, 1H = 1.0078252u.
(ii) What does the existance of magic number indicate?
Explain the release of energy in nuclear fission and fusion on the basis of binding energy per nucleon curve.