मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

The neutron separation energy is defined as the energy required to remove a neutron from the nucleus. Obtain the neutron separation energies of the nuclei ""_20^41"Ca" and ""_13^27 "Al" - Physics

Advertisements
Advertisements

प्रश्न

The neutron separation energy is defined as the energy required to remove a neutron from the nucleus. Obtain the neutron separation energies of the nuclei `""_20^41"Ca"` and `""_13^27 "Al"` from the following data:

`"m"(""_20^40"Ca")` = 39.962591 u

`"m"(""_20^41"Ca")` = 40.962278 u

`"m"(""_13^26"Al")` = 25.986895 u

`"m"(""_13^27"Al")` = 26.981541 u

संख्यात्मक

उत्तर

For `""_20^41"Ca":` Separation energy  = 8.363007 MeV

For `""_13^27"Al":` Separation energy = 13.059 MeV

A neutron `(""_0"n"^1)` is removed from a `""_20^41 "Ca"` nucleus. The corresponding nuclear reaction can be written as:

`""_20^41"Ca" -> ""_20^40"Ca" + _0^1"n"`

It is given that:

Mass `"m"(""_20^40 "Ca")`= 39.962591 u

Mass `"m"(""_20^41 "Ca")` = 40.962278 u

Mass m(`""_0"n"^1`) = 1.008665 u

The mass defect of this reaction is given as:

Δ m = `"m"(""_20^40"Ca") + (""_0^1"n") - "m"(""_20^41 "Ca")`

`= 39.962591 + 1.008665 - 40.962278 = 0.008978 "u"`

But 1 u = 931.5 MeV/c2

∴ Δ m = 0.008978 × 931.5 MeV/c2

Hence, the energy required for neutron removal is calculated as:

`"E" = triangle"mc"^2`

= 0.008978 xx 931.5 = 8.363007 MeV

For `""_13^27 "Al"` the neutron removal reaction can be written as:

\[\ce{^27_13Al -> ^26_13Al + ^1_0n}\]

it us given that.

Mass `"m"(""_13^27 "Al")` = 26.981541 u

Mass `"m"(""_13^26 "Al")` = 25.986895 u

The mass defect of this reaction is given as:

`triangle"m" = "m"(""13^26 "Al") + "m"(""_0^1 "n") - "m"(""_13^27 "Al")`

= 25.986895 + 1.008665 - 26.981541

= 0.014019 u

`= 0.014019 xx 931.5 " MeV/c"^2`

Hence, the energy required for neutron removal is calculated as:

`E = triangle"mc"^2`

= 0.014019 x 931.5 = 13.059 MeV

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Nuclei - Exercise [पृष्ठ ४६४]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 13 Nuclei
Exercise | Q 13.24 | पृष्ठ ४६४
एनसीईआरटी Physics [English] Class 12
पाठ 13 Nuclei
Exercise | Q 24 | पृष्ठ ४६४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write symbolically the nuclear βdecay process of `""_6^11C` Is the decayed product X an isotope or isobar of (`""_6^11C`)? Given the mass values m (`""_6^11C`) = 11.011434 u and m (X) = 11.009305 u. Estimate the Q-value in this process.


Is the nucleus formed in the decay of the nucleus `""_11^22Na`, an isotope or isobar?


Define half-life of a radioactive substance


Define the terms (i) half-life (T1/2) and (ii) average life (τ). Find out their relationships with the decay constant (λ).


What characteristic property of nuclear force explains the constancy of binding energy per nucleon (BE/A) in the range of mass number ‘A’ lying 30 < A < 170?


Is it easier to take out a nucleon (a) from carbon or from iron (b) from iron or from lead?


If the nucleons of a nucleus are separated from each other, the total mass is increased. Where does this mass come from?


Find the binding energy per nucleon of `""_79^197"Au"` if its atomic mass is 196.96 u.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)


Binding energy per nucleon for helium nucleus (2 He) is 7.0 MeV Find value of mass defect for helium nucleus


In a nuclear reactor, what is the function of:
(i) The moderator
(ii) The control rods
(iii) The coolant


Mx and My denote the atomic masses of the parent and the daughter nuclei respectively in a radioactive decay. The Q-value for a β decay is Q1 and that for a β+ decay is Q2. If m e denotes the mass of an electron, then which of the following statements is correct?


Tritium is an isotope of hydrogen whose nucleus Triton contains 2 neutrons and 1 proton. Free neutrons decay into `p + bare + barν`. If one of the neutrons in Triton decays, it would transform into He3 nucleus. This does not happen. This is because ______.


He23 and He13 nuclei have the same mass number. Do they have the same binding energy?


The deuteron is bound by nuclear forces just as H-atom is made up of p and e bound by electrostatic forces. If we consider the force between neutron and proton in deuteron as given in the form of a Coulomb potential but with an effective charge e′: F = `1/(4πε_0) e^('2)/r` estimate the value of (e’/e) given that the binding energy of a deuteron is 2.2 MeV.


Nuclei with magic no. of proton Z = 2, 8, 20, 28, 50, 52 and magic no. of neutrons N = 2, 8, 20, 28, 50, 82 and 126 are found to be very stable.

(i) Verify this by calculating the proton separation energy Sp for 120Sn (Z = 50) and 121Sb = (Z = 51).

The proton separation energy for a nuclide is the minimum energy required to separate the least tightly bound proton from a nucleus of that nuclide. It is given by `S_P = (M_(z-1^' N) + M_H - M_(ZN))c^2`. 

Given 119In = 118.9058u, 120Sn = 119.902199u, 121Sb = 120.903824u, 1H = 1.0078252u.

(ii) What does the existance of magic number indicate?


Define binding energy per nucleon.


Which of the following quantities is a measure of stability of nucleus?


Calculate the values of x and y in the following nuclear reaction.

\[\ce{^227_89Ac -> ^211_82Pb + x[^4_2He]+ y[^0_-1e]}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×