Advertisements
Advertisements
प्रश्न
A source contains two phosphorous radio nuclides `""_15^32"P"` (T1/2 = 14.3d) and `""_15^33"P"` (T1/2 = 25.3d). Initially, 10% of the decays come from `""_15^33"P"`. How long one must wait until 90% do so?
उत्तर
Half life of `""_15^32"P"`, T1/2 = 14.3 days
Half life of `""_15^33"P"`, T’1/2 = 25.3 days
`""_15^33"P"` nucleus decay is 10% of the total amount of decay.
The source has initially 10% of `""_15^33"P"` nucleus and 90% of `""_15^33"P"` nucleus.
Suppose after t days, the source has 10% of `""_15^32"P'` nucleus and 90% of `""_15^33"P"` nucleus.
Initially:
Number of `""_15^33"P"` nucleus = N
Number of `""_15^32"P"` nucleus = 9 N
Finally:
Number of `""_15^33"P"` nucleus = 9N
Number of `""_15^32"P"` nucleus = N
For `""_15^32"P"` nucleus, we can write the number ratio as:
`"N'"/(9"N'") = (1/2)^("t"/"T"_(1//2))`
`"N'" = 9"N" (2)^(-1/14.3)` ....(1)
For `""_15^33"P"` we can write the number ratio as:
`9"N'" = "N"(2)^(-1/(25.3))` ...(2)
On dividing equation (1) by equation (2), we get:
`1/9 = 9 xx 2^(("t"/25.3 - "t"/14.3))`
`1/18 = 2^(-((11"t")/(25.3 xx 14.3)))`
log 1 - log 81 = `(-11"t")/(25.3 xx 14.3)` log 2
`(-11"t")/(25.3 xx 14.3) = (0 - 1.908)/(0.301)`
t = `(25.3 xx 14.3 xx 1.908)/11 xx 0.301 ~~ 208.5` day
Hence, it will take about 208.5 days for 90% decay of `""_15"P"^33`.
APPEARS IN
संबंधित प्रश्न
The decay constant of radioactive substance is 4.33 x 10-4 per year. Calculate its half life period.
State the law of radioactive decay.
Why is it found experimentally difficult to detect neutrinos in nuclear β-decay?
The radionuclide 11C decays according to
\[\ce{^11_6C -> ^11_5B + e+ + \text{v}}\] : T1/2 = 20.3 min
The maximum energy of the emitted positron is 0.960 MeV.
Given the mass values: `"m"(""_6^11"C") = 11.011434 u and "m"(""_6^11"B") = 11.009305 "u"`
Calculate Q and compare it with the maximum energy of the positron emitted.
The Q value of a nuclear reaction A + b → C + d is defined by
Q = [mA+ mb − mC − md]c2 where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.
\[\ce{^12_6C + ^12_6C ->^20_10Ne + ^4_2He}\]
Atomic masses are given to be
`"m"(""_1^2"H")` = 2.014102 u
`"m"(""_1^3"H")` = 3.016049 u
`"m"(""_6^12C)` = 12.000000 u
`"m"(""_10^20"Ne")` = 19.992439 u
Why is it experimentally found difficult to detect neutrinos in this process ?
In a radioactive decay, neither the atomic number nor the mass number changes. Which of the following particles is emitted in the decay?
57Co decays to 57Fe by β+- emission. The resulting 57Fe is in its excited state and comes to the ground state by emitting γ-rays. The half-life of β+- decay is 270 days and that of the γ-emissions is 10−8 s. A sample of 57Co gives 5.0 × 109 gamma rays per second. How much time will elapse before the emission rate of gamma rays drops to 2.5 × 109per second?
Consider the situation of the previous problem. Suppose the production of the radioactive isotope starts at t = 0. Find the number of active nuclei at time t.
Define the term 'decay constant' of a radioactive sample. The rate of disintegration of a given radioactive nucleus is 10000 disintegrations/s and 5,000 disintegrations/s after 20 hr. and 30 hr. respectively from start. Calculate the half-life and the initial number of nuclei at t= 0.
Identify the nature of the radioactive radiations emitted in each step of the decay process given below.
`""_Z^A X -> _Z^A _-1^-4 Y ->_Z^A _-1^-4 W`
Define one Becquerel.
Disintegration rate of a sample is 1010 per hour at 20 hours from the start. It reduces to 6.3 x 109 per hour after 30 hours. Calculate its half-life and the initial number of radioactive atoms in the sample.
A source contains two species of phosphorous nuclei, \[\ce{_15^32P}\] (T1/2 = 14.3 d) and \[\ce{_15^33P}\] (T1/2 = 25.3 d). At time t = 0, 90% of the decays are from \[\ce{_15^32P}\]. How much time has to elapse for only 15% of the decays to be from \[\ce{_15^32P}\]?
Which one of the following nuclei has shorter meant life?
The half-life of a radioactive nuclide is 20 hrs. The fraction of the original activity that will remain after 40 hrs is ______.
Samples of two radioactive nuclides A and B are taken. λA and λB are the disintegration constants of A and B respectively. In which of the following cases, the two samples can simultaneously have the same decay rate at any time?
- Initial rate of decay of A is twice the initial rate of decay of B and λA = λB.
- Initial rate of decay of A is twice the initial rate of decay of B and λA > λB.
- Initial rate of decay of B is twice the initial rate of decay of A and λA > λB.
- Initial rate of decay of B is the same as the rate of decay of A at t = 2h and λB < λA.
Consider a radioactive nucleus A which decays to a stable nucleus C through the following sequence:
A→B→C
Here B is an intermediate nuclei which is also radioactive. Considering that there are N0 atoms of A initially, plot the graph showing the variation of number of atoms of A and B versus time.
A piece of wood from the ruins of an ancient building was found to have a 14C activity of 12 disintegrations per minute per gram of its carbon content. The 14C activity of the living wood is 16 disintegrations per minute per gram. How long ago did the tree, from which the wooden sample came, die? Given half-life of 14C is 5760 years.
Sometimes a radioactive nucleus decays into a nucleus which itself is radioactive. An example is :
\[\ce{^38Sulphur ->[half-life][= 2.48h] ^{38}Cl ->[half-life][= 0.62h] ^38Air (stable)}\]
Assume that we start with 1000 38S nuclei at time t = 0. The number of 38Cl is of count zero at t = 0 and will again be zero at t = ∞ . At what value of t, would the number of counts be a maximum?