मराठी

Why is It Found Experimentally Difficult to Detect Neutrinos in Nuclear β-decay? - Physics

Advertisements
Advertisements

प्रश्न

Why is it found experimentally difficult to detect neutrinos in nuclear β-decay?

उत्तर

Neutrinos are difficult to detect experimentally in β decay because they are uncharged particles with almost no mass. Also, neutrinos interact very weakly with matter, so they are very difficult to detect.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) All India Set 2

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The half-life of `""_38^90 "Sr"` is 28 years. What is the disintegration rate of 15 mg of this isotope?


A source contains two phosphorous radio nuclides `""_15^32"P"` (T1/2 = 14.3d) and `""_15^33"P"` (T1/2 = 25.3d). Initially, 10% of the decays come from `""_15^33"P"`. How long one must wait until 90% do so?


Under certain circumstances, a nucleus can decay by emitting a particle more massive than an α-particle. Consider the following decay processes:

\[\ce{^223_88Ra -> ^209_82Pb + ^14_6C}\]

\[\ce{^223_88 Ra -> ^219_86 Rn + ^4_2He}\]

Calculate the Q-values for these decays and determine that both are energetically allowed.


Calculate the maximum kinetic energy of the beta particle emitted in the following decay scheme:
12N → 12C* + e+ + v
12C* → 12C + γ (4.43MeV).
The atomic mass of 12N is 12.018613 u.

(Use Mass of proton mp = 1.007276 u, Mass of `""_1^1"H"` atom = 1.007825 u, Mass of neutron mn = 1.008665 u, Mass of electron = 0.0005486 u ≈ 511 keV/c2,1 u = 931 MeV/c2.)


Disintegration rate of a sample is 1010 per hour at 20 hours from the start. It reduces to 6.3 x 109 per hour after 30 hours. Calculate its half-life and the initial number of radioactive atoms in the sample.


If 10% of a radioactive material decay in 5 days, then the amount of original material left after 20 days is approximately :


Suppose we consider a large number of containers each containing initially 10000 atoms of a radioactive material with a half life of 1 year. After 1 year ______.


Draw a graph showing the variation of decay rate with number of active nuclei.


Consider a radioactive nucleus A which decays to a stable nucleus C through the following sequence:

A→B→C

Here B is an intermediate nuclei which is also radioactive. Considering that there are N0 atoms of A initially, plot the graph showing the variation of number of atoms of A and B versus time.


What is the half-life period of a radioactive material if its activity drops to 1/16th of its initial value of 30 years?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×