मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान 2nd PUC Class 12

The half-life of Sr3890Sr is 28 years. What is the disintegration rate of 15 mg of this isotope? - Physics

Advertisements
Advertisements

प्रश्न

The half-life of `""_38^90 "Sr"` is 28 years. What is the disintegration rate of 15 mg of this isotope?

संख्यात्मक

उत्तर

Half life of `""_38^90"Sr", "t"_(1/2)`= 28 years

= 28 × 365 × 24 × 60 × 60

= 8.83 × 108 s

Mass of the isotope, m = 15 mg

90 g of `""_38^90"Sr"` atom contains 6.023 × 1023 (Avogadro’s number) atoms.

Therefore, 15 mg of `""_38^90"Sr"` contains:

`(6.023 xx 10^23 xx 15 xx 10^(-3))/90 "i.e." 1.0038 xx 10^20` number of atoms

Rate of disintegration, `"dN"/"dt" = lambda"N"`

Where,

λ = Decay constant = `0.693/(8.83 xx 10^8) "s"^(-1)`

`= "dN"/"dt" = (0.693 xx 1.0038 xx 10^20)/(8.83 xx 10^8) = 7.878 xx 10^10 "atoms/s"`

Hence, the disintegration rate of 15 mg of the given isotope is 7.878 × 1010 atoms/s.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Nuclei - Exercise [पृष्ठ ४६३]

APPEARS IN

एनसीईआरटी Physics [English] Class 12
पाठ 13 Nuclei
Exercise | Q 13.10 | पृष्ठ ४६३
एनसीईआरटी Physics [English] Class 12
पाठ 13 Nuclei
Exercise | Q 10 | पृष्ठ ४६३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Write symbolically the process expressing the β+ decay of `""_11^22Na`. Also write the basic nuclear process underlying this decay.


A radioactive isotope has a half-life of T years. How long will it take the activity to reduce to a) 3.125%, b) 1% of its original value?


The normal activity of living carbon-containing matter is found to be about 15 decays per minute for every gram of carbon. This activity arises from the small proportion of radioactive `""_6^14"C"` present with the stable carbon isotope `""_6^12"C"`. When the organism is dead, its interaction with the atmosphere (which maintains the above equilibrium activity) ceases and its activity begins to drop. From the known half-life (5730 years) of `""_6^14"C"` and the measured activity, the age of the specimen can be approximately estimated. This is the principle of `""_6^14"C"` dating used in archaeology. Suppose a specimen from Mohenjodaro gives an activity of 9 decays per minute per gram of carbon. Estimate the approximate age of the Indus-Valley civilisation.


The Q value of a nuclear reaction A + b → C + d is defined by

Q = [mA+ mb − mC − md]c2 where the masses refer to the respective nuclei. Determine from the given data the Q-value of the following reactions and state whether the reactions are exothermic or endothermic.

\[\ce{^12_6C + ^12_6C ->^20_10Ne + ^4_2He}\]

Atomic masses are given to be

`"m"(""_1^2"H")` = 2.014102 u

`"m"(""_1^3"H")` = 3.016049 u

`"m"(""_6^12C)` = 12.000000 u

`"m"(""_10^20"Ne")` = 19.992439 u


Represent Radioactive Decay curve using relation `N = N_o e^(-lambdat)` graphically


Two different radioactive elements with half lives T1 and T2 have N1 and N2 undecayed atoms respectively present at a given instant. Derive an expression for the ratio of their activities at this instant in terms of N1 and N2 ?


Define the activity of a given radioactive substance. Write its S.I. unit.


Lithium (Z = 3) has two stable isotopes 6Li and 7Li. When neutrons are bombarded on lithium sample, electrons and α-particles are ejected. Write down the nuclear process taking place.


57Co decays to 57Fe by β+- emission. The resulting 57Fe is in its excited state and comes to the ground state by emitting γ-rays. The half-life of β+- decay is 270 days and that of the γ-emissions is 10−8 s. A sample of 57Co gives 5.0 × 109 gamma rays per second. How much time will elapse before the emission rate of gamma rays drops to 2.5 × 109per second?


Consider the situation of the previous problem. Suppose the production of the radioactive isotope starts at t = 0. Find the number of active nuclei at time t.


The half-life of 40K is 1.30 × 109 y. A sample of 1.00 g of pure KCI gives 160 counts s−1. Calculate the relative abundance of 40K (fraction of 40K present) in natural potassium.


Obtain a relation between the half-life of a radioactive substance and decay constant (λ).


Define the term 'decay constant' of a radioactive sample. The rate of disintegration of a given radioactive nucleus is 10000 disintegrations/s and 5,000 disintegrations/s after 20 hr. and 30 hr. respectively from start. Calculate the half-life and the initial number of nuclei at t= 0. 


Disintegration rate of a sample is 1010 per hour at 20 hours from the start. It reduces to 6.3 x 109 per hour after 30 hours. Calculate its half-life and the initial number of radioactive atoms in the sample.


A source contains two species of phosphorous nuclei, \[\ce{_15^32P}\] (T1/2 = 14.3 d) and \[\ce{_15^33P}\] (T1/2 = 25.3 d). At time t = 0, 90% of the decays are from \[\ce{_15^32P}\]. How much time has to elapse for only 15% of the decays to be from \[\ce{_15^32P}\]?


Before the year 1900 the activity per unit mass of atmospheric carbon due to the presence of 14C averaged about 0.255 Bq per gram of carbon.
(a) What fraction of carbon atoms were 14C?
(b) An archaeological specimen containing 500 mg of carbon, shows 174 decays in one hour. What is the age of the specimen, assuming that its activity per unit mass of carbon when the specimen died was equal to the average value of the air? The half-life of 14C is 5730 years.


The half-life of the radioactive substance is 40 days. The substance will disintegrate completely in


The variation of decay rate of two radioactive samples A and B with time is shown in figure.

Which of the following statements are true?

  1. Decay constant of A is greater than that of B, hence A always decays faster than B.
  2. Decay constant of B is greater than that of A but its decay rate is always smaller than that of A.
  3. Decay constant of A is greater than that of B but it does not always decay faster than B.
  4. Decay constant of B is smaller than that of A but still its decay rate becomes equal to that of A at a later instant.

A piece of wood from the ruins of an ancient building was found to have a 14C activity of 12 disintegrations per minute per gram of its carbon content. The 14C activity of the living wood is 16 disintegrations per minute per gram. How long ago did the tree, from which the wooden sample came, die? Given half-life of 14C is 5760 years.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×