मराठी

Samples of two radioactive nuclides A and B are taken. λA and λB are the disintegration constants of A and B respectively. - Physics

Advertisements
Advertisements

प्रश्न

Samples of two radioactive nuclides A and B are taken. λA and λB are the disintegration constants of A and B respectively. In which of the following cases, the two samples can simultaneously have the same decay rate at any time?

  1. Initial rate of decay of A is twice the initial rate of decay of B and λA = λB.
  2. Initial rate of decay of A is twice the initial rate of decay of B and λA > λB.
  3. Initial rate of decay of B is twice the initial rate of decay of A and λA > λB.
  4. Initial rate of decay of B is the same as the rate of decay of A at t = 2h and λB < λA.

पर्याय

  • a and c

  • a and d

  • b and d

  • a and b

MCQ

उत्तर

b and d

Explanation:

Law of radioactive disintegration: According to Rutherford and Soddy law for radioactive decay is as follows:

At any instant, the rate of decay of radioactive atoms is proportional to the number of atoms present at that instant.” i.e.

dN/dt ∞ N ⇒ dN/dt = – λN

it can be proved that N = N0e–λ1

In terms of mass M – M0eλ1

where N = Number of atoms that remain undecayed after time t,

N0 = Number of atoms present initially (i.e., at t = 0),

M = Mass of radioactive nuclei at time t,

M0 = Mass ofradioactive nuclei at time t = 0,

N0 – N= Number of the disintegrated nuclei in time t,

dN/dt= rate of decay, λ = Decay constant or disintegration constant or radioactivity constant or Rutherford Soddy’s constant or the probability of decay per unit time of a nucleus.

The samples of the two radioactive nuclides A and B can simultaneously have the same decay rate at any time if the initial rate of decay of A is twice the initial rate of decay of B and λA > λB.

Also, when the initial rate of decay of B is the same as the rate of decay of A at t = 2h and λB < λA.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Nuclei - Exercises [पृष्ठ ८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 12
पाठ 13 Nuclei
Exercises | Q 13.09 | पृष्ठ ८३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The normal activity of living carbon-containing matter is found to be about 15 decays per minute for every gram of carbon. This activity arises from the small proportion of radioactive `""_6^14"C"` present with the stable carbon isotope `""_6^12"C"`. When the organism is dead, its interaction with the atmosphere (which maintains the above equilibrium activity) ceases and its activity begins to drop. From the known half-life (5730 years) of `""_6^14"C"` and the measured activity, the age of the specimen can be approximately estimated. This is the principle of `""_6^14"C"` dating used in archaeology. Suppose a specimen from Mohenjodaro gives an activity of 9 decays per minute per gram of carbon. Estimate the approximate age of the Indus-Valley civilisation.


A source contains two phosphorous radio nuclides `""_15^32"P"` (T1/2 = 14.3d) and `""_15^33"P"` (T1/2 = 25.3d). Initially, 10% of the decays come from `""_15^33"P"`. How long one must wait until 90% do so?


The decay constant of `""_80^197`Hg (electron capture to `""_79^197`Au) is 1.8 × 10−4 S−1. (a) What is the half-life? (b) What is the average-life? (c) How much time will it take to convert 25% of this isotope of mercury into gold?


The decay constant of 238U is 4.9 × 10−18 S−1. (a) What is the average-life of 238U? (b) What is the half-life of 238U? (c) By what factor does the activity of a 238U sample decrease in 9 × 109 years?


Define one Becquerel.


Disintegration rate of a sample is 1010 per hour at 20 hours from the start. It reduces to 6.3 x 109 per hour after 30 hours. Calculate its half-life and the initial number of radioactive atoms in the sample.


Two radioactive materials X1 and X2 have decay constants 10λ and λ respectively. If initially, they have the same number of nuclei, then the ratio of the number of nuclei of X1 to that of X2 will belie after a time.


Two radioactive materials Y1 and Y2 have decay constants '5`lambda`' and `lambda` respectively. Initially they have same number of nuclei. After time 't', the ratio of number of nuclei of Y1 to that of Y2 is `1/"e"`, then 't' is equal to ______.


When a nucleus in an atom undergoes a radioactive decay, the electronic energy levels of the atom ______.


The variation of decay rate of two radioactive samples A and B with time is shown in figure.

Which of the following statements are true?

  1. Decay constant of A is greater than that of B, hence A always decays faster than B.
  2. Decay constant of B is greater than that of A but its decay rate is always smaller than that of A.
  3. Decay constant of A is greater than that of B but it does not always decay faster than B.
  4. Decay constant of B is smaller than that of A but still its decay rate becomes equal to that of A at a later instant.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×