Advertisements
Advertisements
प्रश्न
The neutron separation energy is defined as the energy required to remove a neutron from the nucleus. Obtain the neutron separation energies of the nuclei `""_20^41"Ca"` and `""_13^27 "Al"` from the following data:
`"m"(""_20^40"Ca")` = 39.962591 u
`"m"(""_20^41"Ca")` = 40.962278 u
`"m"(""_13^26"Al")` = 25.986895 u
`"m"(""_13^27"Al")` = 26.981541 u
उत्तर
For `""_20^41"Ca":` Separation energy = 8.363007 MeV
For `""_13^27"Al":` Separation energy = 13.059 MeV
A neutron `(""_0"n"^1)` is removed from a `""_20^41 "Ca"` nucleus. The corresponding nuclear reaction can be written as:
`""_20^41"Ca" -> ""_20^40"Ca" + _0^1"n"`
It is given that:
Mass `"m"(""_20^40 "Ca")`= 39.962591 u
Mass `"m"(""_20^41 "Ca")` = 40.962278 u
Mass m(`""_0"n"^1`) = 1.008665 u
The mass defect of this reaction is given as:
Δ m = `"m"(""_20^40"Ca") + (""_0^1"n") - "m"(""_20^41 "Ca")`
`= 39.962591 + 1.008665 - 40.962278 = 0.008978 "u"`
But 1 u = 931.5 MeV/c2
∴ Δ m = 0.008978 × 931.5 MeV/c2
Hence, the energy required for neutron removal is calculated as:
`"E" = triangle"mc"^2`
= 0.008978 xx 931.5 = 8.363007 MeV
For `""_13^27 "Al"` the neutron removal reaction can be written as:
\[\ce{^27_13Al -> ^26_13Al + ^1_0n}\]
it us given that.
Mass `"m"(""_13^27 "Al")` = 26.981541 u
Mass `"m"(""_13^26 "Al")` = 25.986895 u
The mass defect of this reaction is given as:
`triangle"m" = "m"(""13^26 "Al") + "m"(""_0^1 "n") - "m"(""_13^27 "Al")`
= 25.986895 + 1.008665 - 26.981541
= 0.014019 u
`= 0.014019 xx 931.5 " MeV/c"^2`
Hence, the energy required for neutron removal is calculated as:
`E = triangle"mc"^2`
= 0.014019 x 931.5 = 13.059 MeV
APPEARS IN
संबंधित प्रश्न
Derive an expression for the total energy of electron in ‘n' th Bohr orbit. Hence show that energy of the electron is inversely proportional to the square of principal quantum number. Also define binding energy.
Is the nucleus formed in the decay of the nucleus `""_11^22Na`, an isotope or isobar?
Obtain the binding energy of the nuclei `""_26^56"Fe"` and `""_83^209"Bi"` in units of MeV from the following data:
`"m"(""_26^56"Fe")` = 55.934939 u
`"m"(""_83^209"Bi")`= 208.980388 u
Consider the fission of `""_92^238"U"` by fast neutrons. In one fission event, no neutrons are emitted and the final end products, after the beta decay of the primary fragments, are `""_58^140"Ce"` and `""_44^99"Ru"`. Calculate Q for this fission process. The relevant atomic and particle masses are
`"m"(""_92^238"U")` = 238.05079 u
`"m"(""_58^140"Ce")` = 139.90543 u
`"m"(""_44^99"Ru")` = 98.90594 u
In which of the following decays the atomic number decreases?
(a) α-decay
(b) β+-decay
(c) β−-decay
(d) γ-decay
What is the minimum energy which a gamma-ray photon must possess in order to produce electron-positron pair?
Calculate mass defect and binding energy per nucleon of `"_10^20 Ne`, given
Mass of `"_10^20 Ne= 19.992397` u
Mass of `"_0^1H = 1.007825` u
Mass of `"_0^1n = 1.008665` u
The figure shows the plot of binding energy (BE) per nucleon as a function of mass number A. The letters A, B, C, D, and E represent the positions of typical nuclei on the curve. Point out, giving reasons, the two processes (in terms of A, B, C, D, and E ), one of which can occur due to nuclear fission and the other due to nuclear fusion.
Calculate the binding energy of an alpha particle given its mass to be 4.00151 u.
An electron in hydrogen atom stays in its second orbit for 10−8 s. How many revolutions will it make around the nucleus at that time?
The difference in mass of a nucleus and its constituents is called ______.
Mx and My denote the atomic masses of the parent and the daughter nuclei respectively in a radioactive decay. The Q-value for a β– decay is Q1 and that for a β+ decay is Q2. If m e denotes the mass of an electron, then which of the following statements is correct?
The deuteron is bound by nuclear forces just as H-atom is made up of p and e bound by electrostatic forces. If we consider the force between neutron and proton in deuteron as given in the form of a Coulomb potential but with an effective charge e′: F = `1/(4πε_0) e^('2)/r` estimate the value of (e’/e) given that the binding energy of a deuteron is 2.2 MeV.
Nuclei with magic no. of proton Z = 2, 8, 20, 28, 50, 52 and magic no. of neutrons N = 2, 8, 20, 28, 50, 82 and 126 are found to be very stable.
(i) Verify this by calculating the proton separation energy Sp for 120Sn (Z = 50) and 121Sb = (Z = 51).
The proton separation energy for a nuclide is the minimum energy required to separate the least tightly bound proton from a nucleus of that nuclide. It is given by `S_P = (M_(z-1^' N) + M_H - M_(ZN))c^2`.
Given 119In = 118.9058u, 120Sn = 119.902199u, 121Sb = 120.903824u, 1H = 1.0078252u.
(ii) What does the existance of magic number indicate?
Explain the release of energy in nuclear fission and fusion on the basis of binding energy per nucleon curve.
Define binding energy per nucleon.
Which of the following quantities is a measure of stability of nucleus?
Find the binding energy per nucleon of 235U based on the information given below.
Mass(u) | |
mass of neutral `""_92^235"U"` | 235.0439 |
mass of a proton | 1.0073 |
mass of a neutron | 1.0087 |