मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Using the energy conservation, derive the expressions for the minimum speeds at different locations along a vertical circular motion controlled by gravity. Is zero speed possible at the uppermost - Physics

Advertisements
Advertisements

प्रश्न

Using the energy conservation, derive the expressions for the minimum speeds at different locations along a vertical circular motion controlled by gravity. Is zero speed possible at the uppermost point? Under what condition/s?

व्युत्पत्ती

उत्तर

Consider a small body (or particle) of mass m tied to a string and revolved in a vertical circle of radius r at a place where the acceleration due to gravity is g. At every instant of its motion, the body is acted upon by two forces, namely,

its weight `vec(mg)` and

the tension `vecT` in the string.

(i) At the top (point A): Let v1 be the speed of the particle and T1 the tension in the string. Here, both `vec(T_1)` and weight `vec(mg)` are vertically downward. Hence, the net force on the particle towards the centre O is T1 + mg, which is the necessary centripetal force.

`therefore  T_1 + mg = (mv_1^2)/r`   ...(1)

To find the minimum value of v1 that the particle must have at the top, we consider the limiting case when the tension T1 just becomes zero.

`therefore  (mv_1^2)/r = mg`

that is, the particle's weight alone is the necessary centripetal force at point A.

`therefore  v_1^2 = gr`

`therefore  v_1 = sqrt(gr)`   ...(2)

Vertical circular motion (schematic)

(ii) At the bottom (point B): Let v2 be the speed at the bottom. Taking the reference level for zero potential energy to be the bottom of the circle, the particle has only kinetic energy `1/2 mv_2^2` at the lowest point.

Total energy at the bottom = KE + PE

= `1/2 mv_2^2 + 0 = 1/2 mv_2^2`   ...(3)

As the particle goes from the bottom to the top of the circle, it rises through a height h = 2r. Therefore, its potential energy at the top is 

mgh = mg (2r)

and,  from Eq. (2), its minimum kinetic energy there is 

`1/2 mv_1^2 = 1/2 mgr`   ...(4)

Minimum total energy at the top = KE + PE

= `1/2 mgr + 2 mgr`

= `5/2 mgr`   ...(5)

Assuming that the total energy of the particle is conserved, total energy at the bottom = total energy at the top. Then, from Eqs. (4) and (5),

`1/2 mv_2^2 = 5/2 mgr`

The minimum speed the particle must have at the lowest position is

`v_2 = sqrt(5 gr)`   ...(6)

(iii) At the midway (point C): Let v3 be the speed at point C, so that its kinetic energy is `1/2 mv_3^2`.

At C, the particle is at a height r from the bottom of the circle. Therefore, its potential energy at C is mgr.

Total energy at C = `1/2 mv_3^2 + mgr`   ...(7)

From the law of conservation of energy,

total energy at C = total energy at B

`therefore  1/2 mv_3^2 + mgr = 5/2 mgr`

`therefore  v_3^2 = 5gr - 2gr`

`therefore  v_3^2 = 3gr`

∴ The minimum speed the particle must have midway up is `v_3 = sqrt(3 gr)`   ...(8)

In non-uniform vertical circular motion, e.g., those of a small body attached to a string or the loop-the-loop manoeuvres of an aircraft, motorcycle, or skateboard, the body must have some minimum speed to reach the top and complete the circle. In this case, the motion is controlled only by gravity, and zero speed at the top is not possible.
However, in a controlled vertical circular motion, e.g., those of a small body attached to a rod or the giant wheel (Ferris wheel) ride, the body or the passenger seat can have zero speed at the top, i.e., the motion can be brought to a stop.

shaalaa.com
Applications of Uniform Circular Motion
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Rotational Dynamics - Exercises [पृष्ठ २४]

APPEARS IN

बालभारती Physics [English] 12 Standard HSC Maharashtra State Board
पाठ 1 Rotational Dynamics
Exercises | Q 4.1 | पृष्ठ २४

संबंधित प्रश्‍न

Answer in Brief:

Part of a racing track is to be designed for curvature of 72m. We are not recommending the vehicles to drive faster than 216 kmph. With what angle should the road be tilted? By what height will its outer edge be, with respect to the inner edge if the track is 10 m wide?


A road is constructed as per the given requirements. The coefficient of static friction between the tyres of a vehicle on this road is 0.8, will there be any lower speed limit? By how much can the upper speed limit exceed in this case?

(Given: r = 72 m, vo = 216 km/h, w = 10 m, θ = 78°4', h = 9.805 m)


During a stunt, a cyclist (considered to be a particle) is undertaking horizontal circles inside a cylindrical well of radius 6.05 m. If the necessary friction coefficient is 0.5, how much minimum speed should the stunt artist maintain? The mass of the artist is 50 kg. If she/he increases the speed by 20%, how much will the force of friction be?


Using energy conservation, along a vertical circular motion controlled by gravity, prove that the difference between the extreme tensions (or normal forces) depends only upon the weight of the objects.


A vehicle of mass m is moving with momentum p on a rough horizontal road. The coefficient of friction between the tyres and the horizontal road is µ. The stopping distance is ____________.

(g = acceleration due to gravity)


For a body moving with constant speed in a horizontal circle, which of the following remains constant?


The maximum safe speed, for which a banked road is intended, is to be increased by 20 %. If the angle of banking is not changed, then the radius of curvature of the road should be changed from 30 m to ____________.


A horizontal circular platform of mass 100 kg is rotating at 5 r.p.m. about vertical axis passing through its centre. A child of mass 20 kg is standing on the edge of platform. If the child comes to the centre of platform then the frequency of rotation will become ______.


A pendulum has length of 0.4 m and maximum speed 4 m/s. When the length makes an angle 30° with the horizontal, its speed will be ______.
`[sin  pi/6 = cos  pi/3 = 0.5 and "g" = 10 "m"//"s"^2]`


In the case of conical pendulum, if 'T' is the tension in the string and 'θ' is the semi-vertical angle of cone, then the component which provides necessary centripetal force is ______.


A flat curved road on highway has radius of curvature 400 m. A car rounds the curve at a speed of 24 m/s. The minimum value of coefficient of friction to prevent car from sliding is ______.

(take g = 10 m/s2)


A particle rotates in horizontal circle of radius 'R' in a conical funnel, with speed 'V'. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is ______.

(g = acceleration due to gravity)


A particle executes uniform circular motion with angular momentum 'L'. Its rotational kinetic energy becomes half when the angular frequency is doubled. Its new angular momentum is ______.


If friction is made zero for a road, can a vehicle move safely on this road?


What is banking of a road? 


A curved road 5 m wide is to be designed with a radius of curvature 900 m. What should be the elevation of the outer edge of the road above the inner edge optimum speed of the vehicles rounding the curve is 30 m/s.


A cyclist is undertaking horizontal circles inside a cylindrical well of radius 5 m. If the friction coefficient is 0.5, what should be the minimum speed of the cyclist?


A string of length 0.5 m carries a bob of mass 0.1 kg at its end. If this is to be used as a conical pendulum of period 0.4 π sec, the angle of inclination of the string with the vertical is ______. (g = 10m/s2)


A body performing uniform circular motion has ______.


Derive an expression for maximum speed moving along a horizontal circular track.


The radius of a circular track is 200 m. Find the angle of banking of the track, if the maximum speed at which a car can be driven safely along it is 25 m/sec.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×