Advertisements
Advertisements
प्रश्न
Using the identity (a + b)(a – b) = a2 – b2, find the following product
(6x + 7y)(6x – 7y)
उत्तर
(6x + 7y)(6x – 7y)
Substituting a = 6x and b = 7y
In (a + b)(a – b) = a2 – b2, we get
(6x + 7y)(6x – 7y) = (6x)2 – (7y)2
= 62x2 – 72y2
(6x + 7y)(6x – 7y) = 36x2 – 49y2
APPEARS IN
संबंधित प्रश्न
Factorise: 4x2 – 9y2
Multiply the following:
(a2 – b2), (a2 + b2)
Using suitable identities, evaluate the following.
(132)2 – (68)2
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
25ax2 – 25a
Factorise the following using the identity a2 – b2 = (a + b)(a – b).
p5 – 16p
Factorise the expression and divide them as directed:
(x3 + x2 – 132x) ÷ x(x – 11)
Factorise the expression and divide them as directed:
(3x2 – 48) ÷ (x – 4)
Verify the following:
(ab + bc)(ab – bc) + (bc + ca)(bc – ca) + (ca + ab)(ca – ab) = 0
Verify the following:
(a + b + c)(a2 + b2 + c2 – ab – bc – ca) = a3 + b3 + c3 – 3abc
Find the value of `(6.25 xx 6.25 - 1.75 xx 1.75)/(4.5)`