Advertisements
Advertisements
प्रश्न
Verify n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) for the following sets
A = {a, c, e, f, h}, B = {c, d, e, f} and C = {a, b, c, f}
उत्तर
A ∩ B = {a, c, e, f, h} ∩ {c, d, e, f}
= {c, e, f}
B ∩ C = {c, d, e, f} ∩ {a, b, c, f}
= {c, f}
A ∩ C = {a, c, e, f, h} ∩ {a, b, c, f}
= {c, f}
(A ∩ B ∩ C) = {a, c, e, f, h} ∩ {c, d, e, f} ∩ {a, b, c, f}
= {c, f}
(A ∪ B ∪ C) = {a, c, e, f, h} ∪ {c, d, e, f} ∪ {a, b, c, f}
= {a, b, c, d, e, f, h}
n(A ∩ B) = 3, n(B ∩ C) = 2, n(A ∩ C) = 3, n(A ∩ B ∩ C) = 2
n(A ∪ B ∪ C) = 7 ...(1)
n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
= 5 + 4 + 4 – 3 – 2 – 3 + 2
= 15 – 8
= 7 ...(2)
From (1) and (2) we get
n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C)
APPEARS IN
संबंधित प्रश्न
State, whether the pair of sets, given below, are equal sets or equivalent sets:
{3, 5, 7} and {5, 3, 7}
Write the cardinal number of the following set:
A = {0, 1, 2, 4}
Write the cardinal number of the following set:
D= {3, 2, 2, 1, 3, 1, 2}
Write the cardinal number of the following set:
E = {16, 17, 18 19}
Given:
A = {Natural numbers less than 10}
B = {Letters of the word ‘PUPPET’}
C = {Squares of first four whole numbers}
D = {Odd numbers divisible by 2}.
Find: A ∩ C AND n(A ∩ C)
If U = {x : x ∈ N, x ≤ 10}, A = {2, 3, 4, 8, 10} and B = {1, 2, 5, 8, 10}, then verify that n(A ∪ B) = n(A) + n(B) – n(A ∩ B)
Verify n(A ∪ B ∪ C) = n(A) + n(B) + n(C) – n(A ∩ B) – n(B ∩ C) – n(A ∩ C) + n(A ∩ B ∩ C) for the following sets
A = {1, 3, 5}, B = {2, 3, 5, 6}, C = {1, 5, 6, 7}
In a class, all students take part in either music or drama or both. 25 students take part in music, 30 students take part in drama and 8 students take part in both music and drama. Find the total number of students in the class
Each student in a class of 35 plays atleast one game among chess, carrom and table tennis. 22 play chess, 21 play carrom, 15 play table tennis, 10 play chess and table tennis, 8 play carrom and table tennis and 6 play all the three games. Find the number of students who play only chess (Hint: Use Venn diagram)
If n(A ∪ B ∪ C) = 100, n(A) = 4x, n(B) = 6x, n(C) = 5x, n(A ∩ B) = 20, n(B ∩ C) = 15, n(A ∩ C) = 25 and n(A ∩ B ∩ C) = 10, then the value of x is