Advertisements
Advertisements
प्रश्न
Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`
उत्तर
f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`
Replacing x by g(x), we get
f[g(x)] = `("g"(x)+3)/("g"(x)-2)`
= `(((2x + 3)/(x - 1)) + 3)/(((2x + 3)/(x - 1)) - 2)`
= `(2x + 3 + 3x -3)/(2x + 3 - 2x +2)`
= `(5x)/5`
= x
g(x) = `(2x+3)/(x-1)`
Replacing x by f(x), we get
g[f(x)] = `("2f"(x) + 3)/("f"(x) - 1)`
= `(2((x + 3)/(x - 2)) + 3)/(((x + 3)/(x - 2)) - 1)`
= `(2x+6+3x-6)/(x+3-x+2)`
= `(5x)/5`
= x
Since, f [g(x)] = x and g[f(x)] = x.
∴ f and g are inverse functions of each other.
APPEARS IN
संबंधित प्रश्न
Let f : {2, 4, 5} → {2, 3, 6} and g : {2, 3, 6} → {2, 4} be given by f = {(2, 3), (4, 6), (5, 2)} and g = {(2, 4), (3, 4), (6, 2)}. Write down g ° f
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g
Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 5x2
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 9x3 + 8
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 3)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)
If f(x) = 2|x| + 3x, then find f(– 5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x + 4| ≥ 5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x − 4| + |x − 2| = 3
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
x2 + 7 |x| + 12 = 0
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
[x + [x + [x]]] = 9
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} > 4
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0
Answer the following:
Find whether the following function is onto or not.
f : R → R defined by f(x) = x2 + 3 for all x ∈ R
Answer the following:
Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
1 < |x − 1| < 4
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
[x − 2] + [x + 2] + {x} = 0
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
`[x/2] + [x/3] = (5x)/6`
Answer the following:
Find (f ° g) (x) and (g ° f) (x)
f(x) = ex, g(x) = log x
The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is
For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.
`int_0^4 x[x] dx`, where [.] denotes the greatest integer function, equals ______
Let F(x) = ex, G(x) = e-x and H(x) = G[F(x)], where x is a real variable. Then `"dH"/"dx"`at x = 0 is ______.
If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______
Inverse of the function y = 5 – 10x is ______.
Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.
The inverse of f(x) = `2/3 (10^x - 10^-x)/(10^x + 10^-x)` is ______.
`int_0^3 [x]dx` = ______, where [x] is greatest integer function.
lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.
The value of `int_-1^3 (|x - 2| + [x]) dx` is equal to ______.
(where [.] denotes greatest integer function)