English

Verify that f and g are inverse functions of each other, where f(x) = x+3x-2, g(x) = 2x+3x-1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`

Sum

Solution

f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`

Replacing x by g(x), we get

f[g(x)] = `("g"(x)+3)/("g"(x)-2)`

= `(((2x + 3)/(x - 1)) + 3)/(((2x + 3)/(x - 1)) - 2)`

= `(2x + 3 + 3x -3)/(2x + 3 - 2x +2)`  

= `(5x)/5`

= x

g(x) = `(2x+3)/(x-1)`

Replacing x by f(x), we get

g[f(x)] = `("2f"(x) + 3)/("f"(x) - 1)`

= `(2((x + 3)/(x - 2)) + 3)/(((x + 3)/(x - 2)) - 1)`

= `(2x+6+3x-6)/(x+3-x+2)`

= `(5x)/5`

= x

Since, f [g(x)] = x and g[f(x)] = x.

∴ f and g are inverse functions of each other.

shaalaa.com
Algebra of Functions
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.2 [Page 127]

RELATED QUESTIONS

If f(x) = 2x2 + 3, g(x) = 5x − 2, then find f ° f


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(3)


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(2)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(5)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1.2)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x + 4| ≥ 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x| ≤ 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2|x| = 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

[x + [x + [x]]] = 9


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2{x} = x + [x]


Answer the following:

Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}


Answer the following:

Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

1 < |x − 1| < 4


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

2[2x − 5] − 1 = 7


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x2] − 5[x] + 6 = 0


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x − 2] + [x + 2] + {x} = 0


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = ex, g(x) = log x


Answer the following:

Find f(x) if g(x) = x2 + x – 2 and (g ° f) (x) = 4x2 – 10x + 4


Answer the following:

Find f(x) if g(x) = `1 + sqrt(x)` and f[g(x)] = `3 + 2sqrt(x) + x`


For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.


If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.


Inverse of the function y = 5 – 10x is ______.


Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.


The inverse of f(x) = `2/3 (10^x - 10^-x)/(10^x + 10^-x)` is ______.


If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.


`int_0^3 [x]dx` = ______, where [x] is greatest integer function.


If z ≠ 0, then `int_(x = 0)^100` [arg | z |] dx is ______.

(where [.] denotes the greatest integer function)


The value of `int_-1^3 (|x - 2| + [x])  dx` is equal to ______.

(where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×