English

Answer the following: Find composite of f and g:f = {(1, 1), (2, 4), (3, 4), (4, 3)} g = {(1, 1), (3, 27), (4, 64)} - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}

Sum

Solution

f = {(1, 1), (2, 4), (3, 4), (4, 3)}

g = {(1, 1), (3, 27), (4, 64)}

∴ f(1) = 1, f(2) = 4, f(3) = 4, f(4) = 3

∴ g(1) = 1, g(3) = 27, g(4) = 64

(g ° f) (x) = g (f(x))

(g ° f) (1) = g (f(1)) = g (1) = 1

(g ° f) (2) = g (f(2)) = g (4) = 64

(g ° f) (3) = g (f(3)) = g (4) = 64

(g ° f) (4) = g (f(4)) = g (3) = 27

∴ g ° f = {(1, 1), (2, 64), (3, 64), (4, 27)}

shaalaa.com
Algebra of Functions
  Is there an error in this question or solution?
Chapter 6: Functions - Miscellaneous Exercise 6.2 [Page 130]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 6 Functions
Miscellaneous Exercise 6.2 | Q II. (11) (ii) | Page 130

RELATED QUESTIONS

Let f : {2, 4, 5} → {2, 3, 6} and g : {2, 3, 6} → {2, 4} be given by f = {(2, 3), (4, 6), (5, 2)} and g = {(2, 4), (3, 4), (6, 2)}. Write down g ° f


Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7


Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 9x3 + 8


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(3)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 4)


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x + 4| ≥ 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2|x| = 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

[x + [x + [x]]] = 9


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2{x} = x + [x]


Answer the following:

Find whether the following function is onto or not.

f : R → R defined by f(x) = x2 + 3 for all x ∈ R


Answer the following:

Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}


Answer the following:

Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8


Answer the following:

Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2


Answer the following:

Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

1 < |x − 1| < 4


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − 9| + |x2 − 4| = 5


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

−2 < [x] ≤ 7


Answer the following:

Find (f ° f) (x) if f(x) = `x/sqrt(1 + x^2)`


Answer the following:

Find (f ° f) (x) if f(x) = `(2x + 1)/(3x - 2)`


If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.


`int_0^4 x[x]  dx`, where [.] denotes the greatest integer function, equals ______


If f(x) =bx - 7 and f(-1) = 4, then b = ______.


Inverse of the function y = 5 – 10x is ______.


Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.


The inverse of f(x) = `2/3 (10^x - 10^-x)/(10^x + 10^-x)` is ______.


If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.


lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×