English

If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(14) - Mathematics and Statistics

Advertisements
Advertisements

Question

If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`

Sum

Solution

f(x) = 2{x} + 5x

`{1/4} = 1/4 - [1/4]`

= `1/4 - 0`

= `1/4`

`"f"(1/4) = 2{1/4} + 5(1/4)`

= `2(1/4) + 5/4`

= `7/4`

= 1.75

shaalaa.com
Algebra of Functions
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.2 [Page 128]

RELATED QUESTIONS

Let f : {2, 4, 5} → {2, 3, 6} and g : {2, 3, 6} → {2, 4} be given by f = {(2, 3), (4, 6), (5, 2)} and g = {(2, 4), (3, 4), (6, 2)}. Write down g ° f


If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g


Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7


Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)


If f(x) = 2|x| + 3x, then find f(2)


If f(x) = 2|x| + 3x, then find f(– 5)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x + 4| ≥ 5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

x2 + 7 |x| + 12 = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x| ≤ 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} = 0.5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2{x} = x + [x]


Answer the following:

Find whether the following function is onto or not.

f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z


Answer the following:

Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}


Answer the following:

Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

1 < |x − 1| < 4


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − x − 6| = x + 2


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

−2 < [x] ≤ 7


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x2] − 5[x] + 6 = 0


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

`[x/2] + [x/3] = (5x)/6`


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = ex, g(x) = log x


Answer the following:

Find (f ° f) (x) if f(x) = `(2x + 1)/(3x - 2)`


The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is


If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.


If f(x) =bx - 7 and f(-1) = 4, then b = ______.


Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.


If z ≠ 0, then `int_(x = 0)^100` [arg | z |] dx is ______.

(where [.] denotes the greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×