Advertisements
Advertisements
Question
If f(x) = 2|x| + 3x, then find f(2)
Solution
f(x) = 2|x| + 3x
f(2) = 2|2| + 3(2)
= 2(2) + 3(2)
= 10.
APPEARS IN
RELATED QUESTIONS
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g
Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7
Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`
Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 8
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)
If f(x) = 2|x| + 3x, then find f(– 5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x + 4| ≥ 5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
x2 + 7 |x| + 12 = 0
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
[x + [x + [x]]] = 9
Answer the following:
Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}
Answer the following:
Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2
Answer the following:
Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`
Answer the following:
If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
2[2x − 5] − 1 = 7
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
[x2] − 5[x] + 6 = 0
Answer the following:
Find the domain of the following function.
f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`
Answer the following:
Find (f ° g) (x) and (g ° f) (x)
f(x) = ex, g(x) = log x
Answer the following:
Find f(x) if g(x) = `1 + sqrt(x)` and f[g(x)] = `3 + 2sqrt(x) + x`
For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.
If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.
`int_0^4 x[x] dx`, where [.] denotes the greatest integer function, equals ______
Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.
The inverse of f(x) = `2/3 (10^x - 10^-x)/(10^x + 10^-x)` is ______.
lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.
If z ≠ 0, then `int_(x = 0)^100` [arg | z |] dx is ______.
(where [.] denotes the greatest integer function)