Advertisements
Advertisements
Question
Answer the following:
Find the domain of the following function.
f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`
Solution
f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`
f(x) is defined if 1 – x2 ≥ 0, `1 - sqrt(1 - x^2) ≥ 0` and `1 - sqrt(1 - sqrt(1 - x^2)) ≥ 0`
If 1 – x2 ≥ 0, then x2 ≤ 1 i.e., – 1 ≤ x ≤ 1
If – 1 ≤ x ≤ 1, then `1 - sqrt(1 - x^2) ≥ 0` and `1 - sqrt(1 - sqrt(1 - x^2)) ≥ 0`.
∴ Domain = [– 1, 1].
APPEARS IN
RELATED QUESTIONS
Let f : {2, 4, 5} → {2, 3, 6} and g : {2, 3, 6} → {2, 4} be given by f = {(2, 3), (4, 6), (5, 2)} and g = {(2, 4), (3, 4), (6, 2)}. Write down g ° f
If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)
If f(x) = 2|x| + 3x, then find f(– 5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1)
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find `"f"(1/4)`
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1.2)
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
[x + [x + [x]]] = 9
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
{x} = 0.5
Answer the following:
Find whether the following function is onto or not.
f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z
Answer the following:
Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}
Answer the following:
Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8
Answer the following:
Find f ° g and g ° f: f(x) = 256x4, g(x) = `sqrt(x)`
Answer the following:
If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
1 < |x − 1| < 4
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
|x2 − x − 6| = x + 2
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
−2 < [x] ≤ 7
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
[x − 2] + [x + 2] + {x} = 0
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
`[x/2] + [x/3] = (5x)/6`
Answer the following:
Find f(x) if g(x) = x2 + x – 2 and (g ° f) (x) = 4x2 – 10x + 4
Answer the following:
Find f(x) if g(x) = `1 + sqrt(x)` and f[g(x)] = `3 + 2sqrt(x) + x`
Answer the following:
Find (f ° f) (x) if f(x) = `x/sqrt(1 + x^2)`
Answer the following:
Find (f ° f) (x) if f(x) = `(2x + 1)/(3x - 2)`
The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is
For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.
If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______
Inverse of the function y = 5 – 10x is ______.
The inverse of f(x) = `2/3 (10^x - 10^-x)/(10^x + 10^-x)` is ______.
If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.