Advertisements
Advertisements
Question
Answer the following:
Find (f ° f) (x) if f(x) = `x/sqrt(1 + x^2)`
Solution
f(x) = `x/sqrt(1 + x^2)`
∴ (f ° f) (x) = f[f(x)]
= `"f"[x/sqrt(1 + x^2)]`
= `((x/sqrt(1 + x^2)))/(sqrt(1 + (x/sqrt(1 + x^2))^2`
= `((x/sqrt(1 + x^2)))/(sqrt(1 + x^2/(1 + x^2))`
= `((x/sqrt(1 + x^2)))/(sqrt((1 + x^2 + x^2)/(1 + x^2)`
= `x/sqrt(1 + 2x^2)`
APPEARS IN
RELATED QUESTIONS
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find f ° g
If f(x) = 2x2 + 3, g (x) = 5x − 2, then find g ° g
Verify that f and g are inverse functions of each other, where f(x) = `(x - 7)/4`, g(x) = 4x + 7
Verify that f and g are inverse functions of each other, where f(x) = `(x + 3)/(x - 2)`, g(x) = `(2x + 3)/(x - 1)`
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = 8
Check if the following function has an inverse function. If yes, find the inverse function.
f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`
If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(2)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(– 3)
If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)
If f(x) = 2|x| + 3x, then find f(2)
If f(x) = 2|x| + 3x, then find f(– 5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(7.2)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find `"f"(- 5/2)`
If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1)
If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x + 4| ≥ 5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x − 4| + |x − 2| = 3
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
x2 + 7 |x| + 12 = 0
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
|x| ≤ 3
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
2|x| = 5
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
[x + [x + [x]]] = 9
Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.
2{x} = x + [x]
Answer the following:
Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2
Answer the following:
If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x
Answer the following:
Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function
|x2 − x − 6| = x + 2
Answer the following:
Find (f ° f) (x) if f(x) = `(2x + 1)/(3x - 2)`
For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.
If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.
If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______
Inverse of the function y = 5 – 10x is ______.
Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.
lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.
The value of `int_-1^3 (|x - 2| + [x]) dx` is equal to ______.
(where [.] denotes greatest integer function)