English

If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5) - Mathematics and Statistics

Advertisements
Advertisements

Question

If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)

Sum

Solution

f(x) = 4[x] − 3

f(0.5) = 4[0.5] – 3

= 4(0) – 3  ...`[(because 0 ≤ 0.5 < 1),(therefore [0.5] = 0)]`

= – 3

shaalaa.com
Algebra of Functions
  Is there an error in this question or solution?
Chapter 6: Functions - Exercise 6.2 [Page 128]

RELATED QUESTIONS

If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f


Verify that f and g are inverse functions of each other, where f(x) = x3 + 4, g(x) = `root(3)(x - 4)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = 9x3 + 8


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(1)


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 6)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x − 4| + |x − 2| = 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

x2 + 7 |x| + 12 = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

{x} = 0.5


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2{x} = x + [x]


Answer the following:

Find whether the following function is onto or not.

f : Z → Z defined by f(x) = 6x – 7 for all x ∈ Z


Answer the following:

Find whether the following function is onto or not.

f : R → R defined by f(x) = x2 + 3 for all x ∈ R


Answer the following:

Find composite of f and g:
f = {(1, 1), (2, 4), (3, 4), (4, 3)}
g = {(1, 1), (3, 27), (4, 64)}


Answer the following:

Find f ° g and g ° f : f(x) = x2 + 5, g(x) = x – 8


Answer the following:

Find f ° g and g ° f: f(x) = 3x – 2, g(x) = x2


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

−2 < [x] ≤ 7


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

2[2x − 5] − 1 = 7


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

[x − 2] + [x + 2] + {x} = 0


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

`[x/2] + [x/3] = (5x)/6`


Answer the following:

Find the domain of the following function.

f(x) = `sqrt(1 - sqrt(1 - sqrt(1 - x^2)`


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = ex, g(x) = log x


Answer the following:

Find f(x) if g(x) = `1 + sqrt(x)` and f[g(x)] = `3 + 2sqrt(x) + x`


For f(x) = [x] , where [x] is the greatest integer function, which of the following is true, for every x ∈ R.


If `a + pi/2 < 2tan^-1x + 3cot^-1x < b`, then a and b are respectively.


`int_0^4 x[x]  dx`, where [.] denotes the greatest integer function, equals ______


If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______ 


If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______ 


If f(x) =bx - 7 and f(-1) = 4, then b = ______.


If f(x) =x4, g(x) = 6x – 2, then g[f(x)] = ______.


The inverse of f(x) = `2/3 (10^x - 10^-x)/(10^x + 10^-x)` is ______.


`int_0^3 [x]dx` = ______, where [x] is greatest integer function.


The value of `int_-1^3 (|x - 2| + [x])  dx` is equal to ______.

(where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×