हिंदी

If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(0.5)

योग

उत्तर

f(x) = 4[x] − 3

f(0.5) = 4[0.5] – 3

= 4(0) – 3  ...`[(because 0 ≤ 0.5 < 1),(therefore [0.5] = 0)]`

= – 3

shaalaa.com
Algebra of Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Functions - Exercise 6.2 [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 6 Functions
Exercise 6.2 | Q 9. (b) | पृष्ठ १२८

संबंधित प्रश्न

Let f : {2, 4, 5} → {2, 3, 6} and g : {2, 3, 6} → {2, 4} be given by f = {(2, 3), (4, 6), (5, 2)} and g = {(2, 4), (3, 4), (6, 2)}. Write down g ° f


If f(x) = 2x2 + 3, g(x) = 5x − 2, then find g ° f


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `(6x - 7)/3`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `sqrt(4x + 5)`


Check if the following function has an inverse function. If yes, find the inverse function.

f(x) = `{(x + 7, x < 0),(8 - x, x ≥ 0):}`


If f(x) = `{(x^2 + 3, x ≤ 2),(5x + 7, x > 2):}`, then find f(0)


If f(x) = `{(4x - 2",", x ≤ -3),(5",", -3 < x < 3),(x^2",", x ≥ 3):}`, then find f(5)


If f(x) = 2|x| + 3x, then find f(2)


If f(x) = 4[x] − 3, where [x] is greatest integer function of x, then find f(2π), where π = 3.14


If f(x) = 2{x} + 5x, where {x} is fractional part function of x, then find f(– 1.2)


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x − 4| + |x − 2| = 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

x2 + 7 |x| + 12 = 0


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

|x| ≤ 3


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

[x + [x + [x]]] = 9


Solve the following for x, where |x| is modulus function, [x] is greatest integer function, [x] is a fractional part function.

2{x} = x + [x]


Answer the following:

Find whether the following function is onto or not.

f : R → R defined by f(x) = x2 + 3 for all x ∈ R


Answer the following:

Find composite of f and g:
f = {(1, 3), (2, 4), (3, 5), (4, 6)}
g = {(3, 6), (4, 8), (5, 10), (6, 12)}


Answer the following:

If f(x) = `(2x - 1)/(5x - 2), x ≠ 5/2` show that (f ° f) (x) = x


Answer the following:

If f(x) = `(x + 3)/(4x - 5)`, g(x) = `(3 + 5x)/(4x - 1)` then show that (f ° g) (x) = x


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

1 < |x − 1| < 4


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

|x2 − x − 6| = x + 2


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

−2 < [x] ≤ 7


Answer the following:

Solve the following for x, where |x| is modulus function, [x] is greatest interger function, {x} is a fractional part function

2[2x − 5] − 1 = 7


Answer the following:

Find (f ° g) (x) and (g ° f) (x)

f(x) = ex, g(x) = log x


Answer the following:

Find f(x) if g(x) = x2 + x – 2 and (g ° f) (x) = 4x2 – 10x + 4


The inverse of the function y = `(16^x - 16^-x)/(16^x + 16^-x)` is


`int_0^4 x[x]  dx`, where [.] denotes the greatest integer function, equals ______


If f = {(4, 1), (5, 2), (6, 3)} and g = { (3, 9), (1, 7), (2, 8)}, then gof is ______ 


Let F(x) = ex, G(x) = e-x and H(x) = G[F(x)], where x is a real variable. Then `"dH"/"dx"`at x = 0 is ______.


If f(x) =x4, g(x) = 6x – 2, then g[f(x)] = ______.


Let f(x) = 1 + x, g(x) = x2 + x + 1, then (f + g) (x) at x = 0 is ______.


If g(x) is the inverse function of f(x) and f'(x) = `1/(1 + x^4)`, then g'(x) is ______.


lf f : [1, ∞) `rightarrow` [2, ∞) is given by f(x) = `x + 1/x`, then f–1(x) is equal to ______.


The value of `int_-1^3 (|x - 2| + [x])  dx` is equal to ______.

(where [.] denotes greatest integer function)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×